Главная страница
Навигация по странице:

  • Сплав железа с углеродом, содержащий 4,5 %С, называется заэвтектическим чугуном. Его структура при комнатной температуре – цементит (первичный) + ледебурит (перлит + цементит).

  • 1. Как влияет степень чистоты металла или наличие примесей в сплаве на протекание процесса кристаллизации


    Скачать 203.5 Kb.
    Название1. Как влияет степень чистоты металла или наличие примесей в сплаве на протекание процесса кристаллизации
    Анкорmaterialovedenie.doc
    Дата03.02.2018
    Размер203.5 Kb.
    Формат файлаdoc
    Имя файлаmaterialovedenie.doc
    ТипДокументы
    #12277

    1. Как влияет степень чистоты металла или наличие примесей в сплаве на протекание процесса кристаллизации?

    Ответ.

    Самопроизвольное зарождение кристаллов в металле очень затруднительно. Обычно источником образования зародышей являются твердые частицы, которые всегда присутствуют в жидком металле. Атомы жидкого металла послойно адсорбируются на поверхности частиц примесей. Чем больше примесей, тем больше центров кристаллизации, тем мельче получается зерно.

    Использование примесей для получения мелкого зерна называется модифицированием. При модифицировании в расплавленный металл вводят небольшое количество специальных веществ (модификаторов), которые, практически не изменяя состав металла, вызывают при кристаллизации измельчение зерна и улучшение механических свойств.

    Модифицирование – использование специально вводимых в жидкий металл примесей (модификаторов) для получения мелкого зерна. Эти примеси, практически не изменяя химического состава сплава, вызывают при кристаллизации измельчение зерна и в итоге улучшение механических свойств. Так, например, при модифицировании магниевых сплавов зерно уменьшается с 0,2-0,3 до 0,01-0,02 мм. При литье слитков в фасонных отливках модифицирование чаще проводят введением в расплав добавок, которые образуют тугоплавкие соединения (карбиды, нитриды, оксиды), кристаллизирующиеся в первую очередь. Выделяясь в виде мельчайших частиц, эти соединения служат зародышами образующихся при затвердевании кристаллов (модификаторы I рода). В качестве модификаторов при модифицировании алюминиевых сплавов применяют Ti, V, Zr; стали – Al, V, Ti. Иногда используют растворимые в жидком металле модификаторы (модификаторы II рода), избирательно адсорбирующиеся на кристаллическом зародыше, которые снижают межфазовое поверхностное натяжение и затрудняют рост кристаллитов. Для алюминиевых сплавов в качестве модификаторов второго рода используют Li, Na, K, для стали – редкоземельные элементы.

    Для измельчения структуры эвтектики и устранения избыточных кристаллов кремния силумины модифицируют натрием (0,05-0,08%) путем присадки к расплаву смеси солей 67% NaF и 33% NaCl. В присутствии натрия происходит смещение линий диаграммы состояния и заэвтектический (эвтектический) сплав АЛ2 (11-13% Si) становится доэвтектическим. В этом случае в структуре сплава вместо избыточного кремния появляются кристаллы α-твердого раствора. В процессе затвердевания кристаллы кремния обволакиваются пленкой силицида натрия Na2Si, которая затрудняет их рост. Такие изменения структуры улучшают механические свойства.






    Рисунок 1 – Диаграмма состояния Al-Si

    Рисунок 2 – Механические свойства сплава Al-Si (1 – после модифицирования; 2 – до модифицирования


    2. Вычертите диаграмму состояния железо-карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения ( с применением правила фаз) для сплава, содержащего 4,5 %С. Какова структура этого сплава при комнатной температуре, и как такой сплав называется?

    Ответ.

    Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF (линию солидус).

    При кристаллизации сплавов по линии АВ из жидкого раствора выделяются кристаллы твердого раствора углерода в α-железе (δ-раствор). Процесс кристаллизации сплавов с содержанием углерода до 0,1 % заканчивается по линии АН с образованием α (δ)-твердого раствора. На линии HJB протекает перитектическое превращение, в результате которого образуется твердый раствор углерода в γ-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE.

    При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3% до 6,67 % углерода, при температурах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристаллизующийся из жидкой фазы, называется первичным. B точке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3% образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулой ЖР4,3Л[А2,146,67]. Процесс первичной кристаллизации чугунов заканчивается по линии ECF образованием ледебурита.

    Таким образом, структура чугунов ниже 1147°С будет: доэвтектических – аустенит+ледебурит, эвтектических – ледебурит и заэвтектических – цементит (первичный)+ледебурит.

    Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении γ-железа в α-железо и распадом аустенита.

    Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавы состоят из феррита и аустенита.

    Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшения растворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.

    В точке S при температуре 727°С и концентрации углерода в аустените 0,8 % образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8П[Ф0,036,67].

    Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.

    Следовательно, сплавы, содержащие менее 0,008% углерода (точкаQ), являются однофазными и имеют структуру чистого феррита, а сплавы, содержащие углерод от 0,008 до 0,03% – структуру феррит+цементит третичный и называются техническим железом.

    Доэвтектоидные стали при температуре ниже 727ºС имеют структуру феррит+перлит и заэвтектоидные – перлит+цементит вторичный в виде сетки по границам зерен.

    В доэвтектических чугунах в интервале температур 1147–727ºС при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода(линия ES). По достижении температуры 727ºС (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращаясь в перлит. Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит+цементит).

    Структура эвтектических чугунов при температурах ниже 727ºС состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727ºС состоит из ледебурита превращенного и цементита первичного.



    а) б)

    Рисунок : а – диаграмма железо-цементит,

    б – кривая охлаждения для сплава, содержащего 4,5% углерода

    Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:

    C = K + 1 – Ф,

    где С – число степеней свободы системы;

    К – число компонентов, образующих систему;

    1 – число внешних факторов (внешним фактором считаем только температуру, так как давление за исключением очень высокого мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях);

    Ф – число фаз, находящихся в равновесии.

    Сплав железа с углеродом, содержащий 4,5 %С, называется заэвтектическим чугуном. Его структура при комнатной температуре – цементит (первичный) + ледебурит (перлит + цементит).

     Составим таблицу превращений и количества фаз с указанием температур точек фазовых переходов.

    Таблица – Состав и фазовые переходы

    Т, С

    Состав

    Число компонент

    Число фаз

    Число степеней свободы

    >1225

    Жидкий металл

    2

    1

    2+1–1=2

    1147…1225

    Жидкость+аустенит

    2

    2

    2+1–2=1

    1147

    Распад аустенита

    2

    2

    2+1–3=0

    727…1147

    Аустенит+цементит+ледебурит

    2

    1

    2+1–2=1

    727

    Распад аустенита

    2

    3

    2+1–3=0

    20…727

    Цементит+перлит+ледебурит

    2

    3

    2+1–2=1


    3. Для изготовления молотовых штампов выбрана сталь 5ХНВ. Укажите состав, назначьте и обоснуйте режим термической обработки, объяснив влияние легирования на превращения, происходящие при термической обработке данной стали. Опишите структуру и главные свойства штампов после термической обработки.

    Ответ.

    Химический состав в % стали 5ХНВ ГОСТ 5950 – 73

    C

    Si

    Mn

    Ni

    S

    P

    Cr

    W

    0,5 - 0,6

    0,1 - 0,4

    0,5 - 0,8

    1,4 - 1,8

    до 0,03

    до 0,03

    0,5 - 0,8

    0,4 - 0,7


    Стали для штампов, деформирующих металл в горячем состоянии (ударное нагружение), должны иметь высокие механические свойства (прочность и вязкость) при повышенных температурах и обладать окалиностойкостью и разгаростойкостью, т.е. способностью выдерживать многократные нагревы и охлаждения без образования сетки трещин (сетки разгара). Под разгаростойкостью понимают устойчивость к образованию сетки поверхностных трещин, вызываемых объемными изменениями в поверхностном слое при резкой смене температур. Это свойство обеспечивается снижением содержания углерода в стали для повышения пластичности, вязкости, а также теплопроводности, уменьшающей разогрев поверхностного слоя и термические напряжения в нем.

    Кроме того, стали должны иметь высокую износостойкость и теплопроводность для лучшего отвода тепла, передаваемого обрабатываемой заготовкой.

    Многие штампы имеют большие размеры, поэтому сталь для их изготовления должна обладать высокой прокаливаемостью. Это обеспечивает высокие механические свойства по всему сечению штампа. Важно, чтобы сталь не была склонна к обратимой отпускной хрупкости, так как быстрым охлаждением крупных штампов ее устранить нельзя.

    В соответствии с указанными требованиями для штампов горячей обработки давлением применяют легированные стали с 0,3–0,6% С которые после закалки подвергают отпуску при 550–680 °С на троостит или троостосорбит. Среди них следует выделить несколько групп, обладающих в наибольшей степени теми свойствами, которые необходимы для определенных условий эксплуатации.

    Присутствие в стали вольфрама (5ХНВ) повышает теплостойкость, прокаливаемость и уменьшает склонность к обратимой отпускной хрупкости.

    Сталь 5ХНВ имеет меньшую прокаливаемость, так как вольфрам повышает ее слабее, чем молибден. Она применяется для небольших и средних штампов со стороной 200 – 300 мм.

    Легирующие элементы в небольшом количестве (до 5%) вводят для увеличения закаливаемости, прокаливаемости, уменьшения деформаций и опасности растрескивания инструмента, так как позволяют проводить закалку в масле или горячих средах. Хром – постоянный элемент низколегированных сталей. Для улучшения свойств в них дополнительно вводят марганец, кремний, вольфрам, никель.

    Марганец (1–2%) добавляют для обеспечения минимального изменения размеров при закалке. Интенсивно снижая интервал температур мартенситного превращения, он способствует сохранению повышенного количества остаточного аустенита (15–20%), который частично или полностью компенсирует увеличение объема в результате образования мартенсита.

    Вводят вольфрам (1–5%) для повышения износостойкости. Никель (до 1,5%) добавляют в штамповые стали для увеличения вязкости.

    Температура закалки штампов 820…880° С (более низкая температура для закалки мелких штампов, более высокая – для крупных). Температуру закалки принимают 820…860° С для стали 5ХНВ.

    Структура стали после закалки – мартенсит.

    После закалки штампы немедленно подвергают отпуску. Отпуск штампов снижает их твердость и уменьшает внутренние напряжения, возникающие в штампах в результате закалки. Закалочные напряжения в штампах бывают настолько велики, что если штамп после закалки оставить без отпуска, то через некоторое время в нем образуются трещины. Если закаленный штамп поместить в печь, нагретую до температуры отпуска (500...600° С), то при быстром нагреве поверхностных слоев и значительной разнице между температурой поверхности и температурой сердцевины в штампе могут возникнуть трещины. Поэтому штампы после закалки помещают в отпускную печь, нагретую до температуры не выше 400° С, а затем нагревают до заданной температуры отпуска. Температура отпуска и твердость после отпуска зависят от стали и размера штампа. Более высокая твердость (HRC 40...44) допускается для мелких штампов, в которых деформируемый металл подстывает быстрее. Эти штампы мало деформируются при закалке, поэтому закалку и отпуск можно проводить после окончательной обработки на металлорежущих станках. Средние штампы должны иметь твердость HRC 36...41. Такая твердость позволяет применять комбинированный метод изготовления в следующей последовательности: черновое нарезание фигуры с допуском, термическая обработка, окончательная обработка резанием после термической обработки.

    Крупные штампы должны иметь высокую вязкость; их отпускают до твердости HRC 35...38. Сначала закаливают и отпускают кубики, а затем нарезают фигуру. Изношенные штампы обрабатывают резанием без промежуточного отжига, далее вновь проводят термическую обработку. Температуры отпуска и твердость молотовых штампов приведены в табл. 25.



    Структура стали 5ХНВ после отпуска – троостит и троостит-сорбит.
    написать администратору сайта