Главная страница
Финансы
Экономика
Математика
Начальные классы
Биология
Информатика
Дошкольное образование
Медицина
Сельское хозяйство
Ветеринария
Воспитательная работа
История
Вычислительная техника
Логика
Этика
Философия
Религия
Физика
Русский язык и литература
Социология
Политология
Языкознание
Языки
Юриспруденция
Право
Другое
Иностранные языки
образование
Доп
Технология
Строительство
Физкультура
Энергетика
Промышленность
Автоматика
Электротехника
Классному руководителю
Связь
Химия
География
Логопедия
Геология
Искусство
Культура
ИЗО, МХК
Экология
Школьному психологу
Обществознание
Директору, завучу
Казахский язык и лит
ОБЖ
Социальному педагогу
Языки народов РФ
Музыка
Механика
Украинский язык
Астрономия
Психология

шпоры к зачёту. 1. Строение клетки. Основные функции биологических мембран Важнейшими условиями существования клетки является


Скачать 5.58 Mb.
Название1. Строение клетки. Основные функции биологических мембран Важнейшими условиями существования клетки является
Анкоршпоры к зачёту.doc
Дата12.06.2018
Размер5.58 Mb.
Формат файлаdoc
Имя файлашпоры к зачёту.doc
ТипДокументы
#18376
страница6 из 9
1   2   3   4   5   6   7   8   9


Одним из наиболее изученных случаев вторично-активного транспорта незаряженных молекул является всасывание глюкозы в стенках кишечника. Концентрация глюкозы в энтероцитах выше, чем в просвете кишечника, поэтому пассивное её всасывание невозможно. Клетки кишечника активно выкачивают натрий из энтероцитов в серозную область кишечника, в результате чего концентрация Na+ в клетке снижается по сравнению с его концентрацией снаружи. Благодаря этому становится возможным пассивный транспорт натрия из просвета кишечника в энтероцит. Однако простая диффузия ионов через бислой мало вероятна и натрий может пересечь мембрану только с помощью переносчика. При этом переносчик связывается не только с натрием, но и с молекулой глюкозы. Образовавшийся комплекс пассивно по градиенту концентраций ионов натрия и электрического потенциала переносится внутрь клетки. Таким образом, транспорт глюкозы осуществляется против градиента концентрации, но не за счет энергии АТФ, а за счет существования градиента концентрации другого вещества, в данном случае – ионов натрия. Подобные системы транспорта существуют и для многих других веществ, например, углеводов и аминокислот, что очень важно, так как для них отсутствуют специфические насосы.


50 Образование мембранных потенциалов

В ходе эволюции у железистого эпителия, мышечной и нервной тканей появилось свойство возбудимости – способность реагировать на воздействие окружающей среды возбуждением. Внешним проявлением возбуждения является возникновение биоэлектрического потенциала.

Все ткани организма могут находиться в двух состояниях:

состоянии относительного физиологического покоя;

состоянии активности.

Наблюдается при раздражении ткани. Существует 2 вида активного состояния тканей: возбуждение и торможение. Возбуждение – это активный процесс, представляющий собой ответную реакцию ткани на раздражение и характеризующийся повышением функций ткани. Возбуждение характеризуется двумя группами признаков: неспецифическими и специфическими.

Неспецифические признаки возникают у всех возбудимых тканей вне зависимости от их строения:

изменение проницаемости клеточных мембран

изменение заряда клеточных мембран,

повышение потребления кислорода

повышение температуры

усиление обменных процессов

Специфические признаки различаются у различных тканей:

мышечная ткань – сокращение

железистая ткань – выделение секрета

нервная ткань – генерация нервного импульса.

Процесс возбуждения связан с наличием в мембране электрически (для ионов кальция и хлора) и химически (для ионов натрия и калия) управляемых каналов, которые могут открываться в ответ на соответствующее раздражение клетки.

Мембранный потенциал, разность электрических потенциалов между растворами электролитов a и b, разделенных проницаемой мембраной m: Dabj = ja - jb. В частном случае, когда мембрана проницаема только для определенногоиона Вzв (zB - зарядовое число), общего для растворов электролитов a и b, мембранный потенциал (иногда его называют потенциалом Нернста) рассчитывают по формуле:



где F-число Фарадея, R-газовая постоянная, Т-абсолютная температура, aBb, aBa - активности ионов. В растворах b и a, DabjB-стандартный потенциал распределения иона В, равный



где m0,bB, m0,aB-стандартные хим. потенциалы иона В в растворах b и a соответственно. В такой системе мембранный потенциал не зависит от толщины мембраны и ее структуры, механизма переноса иона и его подвижности.

В общем случае для мембран, проницаемых для одних сортов ионов и не проницаемых для других, при расчете мембранный потенциал требуется введение определенных приближений в зависимости от толщины мембраны, ее состава и строения, а также от механизма переноса. В случае мембран макроскопического размера полный мембранный потенциал слагается из трех компонентов: двух граничных потенциалов, локализованных в двойных электрических слоях на границе мембрана-раствор электролитов, и внутримембранного, локализованного в электронейтральном объеме мембраны. Кроме того, при пропускании электрического тока через мембрану внутри нее возникает падение напряжения. Обычно считается, что переход ионов через межфазную границу происходит быстро, так что их распределение равновесно; затруднен только перенос ионов через объем мембраны. Для системы, в которой в фазе a имеется бинарный электролит В+ А-, присутствующий и в мембране, а мембрана содержит ион R с зарядовым числом zR, не проникающий через межфазные границы, граничный потенциал определяется формулой Доннана и называется доннановским:



Здесь cmR - концентрация ионов R в мембране, gi- и Рi-коэффициент активности и распределения ионов соответственно, определяемые соотношением



Средняя активность электролита  средний коэф. активности , коэффициент распределения электролита 

Таким образом, доннановский потенциал (2) состоит из так называемого потенциала распределения и члена, зависящего от концентрации непроникающего иона R; при малом значении cmR он сводится к потенциалу распределения, а при большом - находится из выражения:



При этом концентрация противоионов А- в мембране перестает зависеть от коэффициента распределения и межфазного потенциала и приближается к предельному значению cmA zRcmR, a одноименно заряженные ионы почти полностью вытесняются из мембраны.

Граничный потенциал может возникнуть в результате реакций комплексообразования или электронообменной реакции между окислительно-восстановительными парами, содержащимися в растворе и в мембране. Если межфазная граница вообще не проницаема для заряженных частиц, граничный потенциал имеет электростатическую природу и возникает в результате адсорбции зарядов и диполей, а также вследствие заряжения границы от внеш. источника.

Внутримембранный потенциал имеет кинетическую природу и определяется переносом ионов через толщу мембраны. В простейшем случае при диффузионно-миграционном переносе бинарного электролита возникает т. наз. диффузионный потенциал (приближение Планка):



где uА, uB-подвижности ионов в мембране, cmBA(0), cmBA(d)-концентрации электролита в мембране у левой и правой межфазных границ соответственно. В случае биол. и бислойных липидных мембран, толщина которых настолько мала, что в них вообще не реализуется область электронейтральности, для нахождения внутримембранного потенциала используют предположение о постоянстве напряженности электрического поля (приближение Гольдмана):



Таким образом, мембранный потенциал в доннановском случае находят из выражения, слагаемые которого определены формулами (2) и (3) или (2) и (4):



Определение мембранного потенциала представляет интерес для ионометрии, для биологии и медицины в связи с распространенностью мембранных процессов в живых организмах и т.д.

51 Потенциал покоя в клетках

Потенциал покоя – относительно стабильная разность электрических потенциалов между наружной и внутренней сторонами клеточной мембраны. Его величина обычно варьирует в пределах от -30 до -90 мВ. Внутренняя сторона мембраны в покое заряжена отрицательно, а наружная – положительно из-за неодинаковых концентраций катионов и анионов внутри и вне клетки.

Внутри- и внеклеточные концентрации ионов (ммоль/л) в мышечных клетках теплокровных животных




Внутриклеточная концентрация

Внеклеточная концентрация

Na+

12

145

K+

155

4

Ca2+

10-8 – 10-7

2

Cl-

4

120 – 130

HCO3-

8

27

Сущность потенциала покоя - это преобладание на внутренней стороне мембраны отрицательных электрических зарядов в виде анионов и недостаток положительных электрических зарядов в виде катионов, которые сосредотачиваются на её наружной стороне, а не на внутренней.

Такое положение вещей достигается с помощью трёх явлений: (1) поведения мембраны , (2) поведения положительных ионов калия и натрия и (3) соотношения химической и электрической силы.

1. Поведение мембраны

В поведении мембраны для потенциала покоя важны три процесса:

1) Обмен внутренних ионов натрия на наружные ионы калия. Обменом занимаются специальные транспортные структуры мембраны: ионные насосы-обменники. Таким способом мембрана перенасыщает клетку калием, но обедняет натрием.

2) Открытые калиевые ионные каналы. Через них калий может как заходить в клетку, так и выходить из неё. Он выходит в основном.

3) Закрытые натриевые ионные каналы. Из-за этого натрий, выведенный из клетки насосми-обменниками, не может вернуться в неё обратно. Натриевые каналы открываются только при особых условиях - и тогда потенциал покоя нарушается и смещается в сторону нуля (это называется деполяризациеймембраны, т.е. уменьшением полярности).

2. Поведение ионов калия и натрия

Ионы калия и натрия по-разному перемещаются через мембрану:

1) Через ионные насосы-обменники калий затаскивается в клетку, а натрий выводится из клетки.

2) Через постоянно открытые калиевые каналы калий выходит из клетки, но может и возвращаться в неё обратно через них же.

3) Натрий "хочет" войти в клетку, но "не может", т.к. каналы для него закрыты.

3. Соотношение химической и электрической силы

По отношению к ионам калия между химической и электрической силой устанавливается равновесие на уровне - 70 мВ.

1) Химическая сила выталкивает калий из клетки, но стремится затянуть в неё натрий.

2) Электрическая сила стремится затянуть в клетку положительно заряженные ионы (как натрий, так и калий).

Формирование потенциала покоя

Натрий-калиевый насос

Итак, результат деятельности мембранных ионных насосов-обменников таков:

Натрий-калиевый ионный насос-обменник создаёт три потенциала (возможности):

1. Электрический потенциал - возможность затягивать внутрь клетки положительно заряженные частицы (ионы).

2. Ионный натриевый потенциал - возможность затягивать внутрь клетки ионы натрия (и именно натрия, а не какие-нибудь другие).

3. Ионный калиевый потенциал - возможновть выталкивать из клетки ионы калия (и именно калия, а не какие-нибудь другие).

1. Дефицит натрия (Na+) в клетке.

2. Избыток калия (K+) в клетке.

Можно сказать так: ионные насосы мембраны создают разность концентрацийионов, или градиент (перепад) концентрации, между внутриклеточной и внеклеточной средой.

Именно из-за получившегося дефицита натрия в клетку теперь "полезет" этот самый натрий снаружи. Так всегда ведут себя вещества: они стремятся выравнять свою концентрацию во всём объёме раствора.

И в то же время в клетке получился избыток ионов калия по сравнению с наружной средой. Потому что насосы мембраны накачали его в клетку. И он стремится уравнять свою концентрацию внутри и снаружи, и поэтому стремится выйти из клетки.

Натрий реагирует на концентрацию натрия же, но "не обращает внимания" на то, сколько вокруг калия. И наоборот, калий реагирует только на концентрацию калия и "не замечает" натрий. Получается, что для понимания поведения ионов в клетке надо по-отдельности сравнивать концентрации ионов натрия и калия. Т.е. надо отдельно сравнить концентрацию по натрию внутри и снаружи клетки и отдельно - концентрацию калия внутри и снаружи клетки, но не имеет смысла сравнивать натрий с калием, как это часто делается в учебниках.

По закону выравнивания концентраций, который действует в растворах, натрий "хочет" снаружи войти в клетку. Но не может, так как мембрана в обычном состоянии плохо его пропускает. Его заходит немножко и клетка его опять тут же обменивает на наружный калий. Поэтому натрий в нейронах всегда в дефиците.

А вот калий как раз может легко выходить из клетки наружу! В клетке его полно, и она его удержать не может. Так вот он и выходит наружу через особые белковые дырочки в мембране (ионные каналы).

Анализ

От химического - к электрическому

Мембранный потенциал покоя - это дефицит положительных зарядов внутри клетки, образовавшийся за счёт утечки из клетки положительных ионов калия.

Заключение

Составные части потенциала покоя

Потенциал покоя - отрицательный со стороны клетки и состоит как бы из двух частей.

1. Первая часть - это примерно -10 милливольт, которые получаются от неравносторонней работы мембранного насоса-обменника (ведь он больше выкачивает "плюсиков" с натрием, чем закачивает обратно с калием).

2. Вторая часть - это утекающий всё время из клетки калий, утаскивающий положительные заряды из клетки. Он дает большую часть мембранного потенциала, доводя его до -70 милливольт.

Калий перестанет выходить из клетки (точнее, его вход и выход сравняются) только при уровне электроотрицательности клетки в -90 милливольт. Но этому мешает постоянно подтекающий в клетку натрий, который тащит с собой свои положительные заряды. И в клетке поддерживается равновесное состояние на уровне -70 милливольт.

Так что всё дело в натрий-калиевом мембранном насосе-обменнике и последующем вытекании из клетки "лишнего" калия. За счёт потери положительных зарядов при этом вытекании внутри клетки нарастает электроотрицательность. Она-то и есть "мембранный потенциал покоя". Он измеряется внутри клетки и составляет обычно -70 мВ. 

Выводы

Мембранный потенциал покоя образуется за счёт двух процессов:

1. Работа калий-натриевого насоса мембраны.

Работа калий-натриевого насоса, в свою очередь, имеет 2 следствия:

1.1. Непосредственное электрогенное (порождающее электрические явления) действие ионного насоса-обменника. Это создание небольшой электроотрицательности внутри клетки (-10 мВ).

Виноват в этом неравный обмен натрия на калий. Натрия выбрасывается из клетки больше, чем поступает в обмен калия. А вместе с натрием удаляется и больше "плюсиков" (положительных зарядов), чем возвращается вместе с калием. Возникает небольшой дефицит положительных зарядов. Мембрана изнутри заряжается отрицательно (примерно -10 мВ).

1.2. Создание предпосылок для возникновения большой электроотрицательности.

Эти предпосылки - неравная концентрация ионов калия внутри и снаружи клетки. Лишний калий готов выходить из клетки и выносить из неё положительные заряды. Об этом мы скажем сейчас ниже.

2. Утечка ионов калия из клетки.

Из зоны повышенной концентрации внутри клетки ионы калия выходят в зону пониженной концентрации наружу, вынося заодно положительные электрические заряды. Возникает сильный дефицит положительных зарядов внутри клетки. В итоге мембрана дополнительно заряжается изнутри отрицательно (до -70 мВ).

 Финал

Итак:

Калий-натриевый насос создает предпосылки для возникновения потенциала покоя. Это - разность в концентрации ионов между внутренней и наружной средой клетки. Отдельно проявляет себя разность концентрации по натрию и разность концентрации по калию. Попытка клетки выравнять концентрацию ионов по калию приводит к потере калия, потере положительных зарядов и порождает электроотрицательность внутри клетки. Эта электроотрицательность составляет большую часть потенциала покоя. Меньшую его часть составляет непосредственная электрогенность ионного насоса, т.е. преобладающие потери натрия при его обмене на калий.


52 Потенциал действия и его распространение вдоль возбудимого волокна

Потенциалом действия (ПД) называется электрический импульс, обусловленный изменением ионной проницаемости мембраны и связанный с распространением по нервам и мышцам волны возбуждения.
Если в каком-нибудь участке возбудимой мембраны сформировался потенциал действия, мембрана деполяризована, возбуждение распространяется на другие участки мембраны. Рассмотрим распространение возбуждения на примере передачи нервного импульса по аксону (рис. 7).



И в аксоплазме, и в окружающем растворе возникают локальные токи: между участками поверхности мембраны с большим потенциалом (положительно заряженными) и участками с меньшим потенциалом (отрицательно заряженными).
Локальные токи образуются и внутри аксона, и на наружной его поверхности. Локальные электрические токи приводят к повышению потенциала внутренней поверхности невозбужденного участка мембраныи φВН к понижению φНАР наружного потенциала невозбужденного участка мембраны, оказавшегося по соседству с возбужденной зоной. Таким образом, отрицательный потенциал покоя  уменьшается по абсолютной величине, то есть повышается. В областях, близких к возбужденному участку, φм повышается выше порогового значения. Под действием изменения мембранного потенциала открываются натриевые каналы и дальнейшее повышение происходит уже за счет потока ионов натрия через мембрану.
Происходит деполяризация мембраны, развивается потенциал действия. Затем возбуждение передается дальше на покоящиеся участки мембраны.
Возбуждение может распространяться только в область мембраны, находящуюся в состоянии покоя, то есть в одну сторону от возбужденного участка аксона. В другую сторону нервный импульс не может распространяться, так как области, через которые прошло возбуждение, некоторое время остаются невозбудимыми - рефрактерными.
Повышение мембранного потенциала - величина деполяризующего потенциала V, перед от

возбужденных участков вдоль мембраны, зависит от расстояния х (как это следует из электродинамики) по формуле:
 Vo - повышение мембранного потенциала в зоне возбуждения, х - расстояние от возбужденного участка; λ - константа длины нервного волокна, равная расстоянию, на котором деполяризующий потенциал уменьшается в е раз (е-основание натурального логарифма ≈ 2,71)
Константа длины нервного волокна

где rm - удельное электрическое сопротивление оболочки волокна, δ - толщина оболочки, а - радиус нервного волокна, rI - удельное электрическое сопротивление цитоплазмы. Чем больше константа длины мембраны, тем больше скорость распространения нервного импульса. Величина λ тем больше, чем больше радиус аксона и удельное сопротивление мембраны и чем меньше удельное сопротивление цитоплазмы.
Большую скорость распространения нервного импульса по аксону кальмара обеспечивает их гигантский по сравнению с аксонами позвоночных диаметр. У позвоночных большая скорость передачи возбуждения в нервных волокнах достигает другими способами. Аксоны позвоночных снабжены миелиновой оболочкой, которая увеличивает сопротивление мембраны и ее толщину.


Возбуждение по миелинизированному волокну распространяется сальтаторно (скачкообразно) от одного перехвата Ранвье (участка, свободного от миелиновой оболочки) до другого. Нервные импульсы проводятся по аксонам в какой-то степени аналогично тому, как передаются электрические сигналы по кабельно-релейной линии. Электрический импульс передается без затухания за счет его усиления на промежуточных релейных станциях, роль которых в аксонах выполняют участки возбудимой мембраны, в которых генерируются потенциалы действия.

53 Электрическая активность органов

функционирование живых клеток сопровождается возникновением трансмембранных потенциалов - биопотенциалов. Клетки, образуя целостный орган, формируют сложную картину его электрической активности. Она определяется как электрической активностью отдельных клеток, так и взаимодействием между ними, устройством самого органа, неоднородностью структуры этого органа, процессами регуляции в нем и целым рядом других причин.

Электрическая активность в большой степени отражает функциональное состояние клеток, тканей и органов. Регистрация и анализ электрической активности позволяют проводить биофизические и медико-биологические исследования с целью изучения работы органов и проведения клинической диагностики.


54 Физические основы электрокардиографии

Каждая клетка сердечной мышцы создаёт электрическое поле, которое имеет характеристики, подобные в общих чертах характеристикам электрического поля других типов мышечных клеток. Но потенциал действия (ПД) сердечных клеток отличается от ПД клеток поперечнополосатых мышц своей формой и длительностью. Электрическое поле сердца в целом образуется наложением электрических полей отдельных клеток. Изменения электрического поля сердца происходят при деполяризации и реполяризации мембраны клеток сердца. Эти изменения достаточны, чтобы создать изменения разности потенциалов между различными точками поверхности тела и чтобы обнаружить указанные изменения на большом расстоянии от их источника.

Графическая запись электрического потенциала, созданного возбуждением клеток сердца, называетсяэлектрокардиограммой (ЭКГ). Таким образом, ЭКГ характеризует возбуждение сердца, но не его сокращения.
Впервые электрокардиограмма была записана голландским физиологом Эйнтховеном посредством сравнительно простого инструмента струнного гальванометра. В настоящее время для записи ЭКГ используют специальные электронные приборы, называемые электрокардиографами. Амплитуда электрического потенциала записанного с поверхности тела может быть менее 1мВ. Следовательно, перед записью потенциал должен быть усилен с помощью устройства, называемого усилителем. Электрокардиограф включает также высокочастотное сито, не пропускающее медленные изменения электрического потенциала, и калибратор, который генерирует электрические импульсы 1мВ, что необходимо для расчета амплитуды зубцов электрокардиограммы.

Форма нормальной электрокардиограммы

Видны несколько отклонений от нулевой линии, которые называются зубцами ЭКГ и обозначаются латинскими буквами P, Q, R, S, T. Зубцы могут быть положительными (направленными вверх) или отрицательными. Положительное отклонение комплекса QRS называют R-зубцом. Отрицательные отклонения, предшествующее R-зубцу и следующее за ним, названы соответственно Q и S -зубцами. Отклонения P и T в норме положительны, но могут быть отрицательными при патологических состояниях. Расстояние между двумя отклонениями называется сегментом. Например, сегмент PQ-является расстоянием между концом P-зубца и началом Q-зубца.

Нормальная электрокардиограмма

Причинами зубцов и сегментов ЭКГ является деполяризация и реполяризация сердечных клеток. Зубец Р отражает деполяризацию предсердий сердца. Их реполяризация совпадает с комплексом QRS и не видна на ЭКГ.
Комплекс QRS - T-зубец представляет постепенное распространение деполяризации по желудочкам сердца и их реполяризацию. Сегмент S - T соответствует возбуждению левых и правых желудочков.

Сердце – электрический диполь


55 Теория отведений Эйнтховена, три стандартных отведения

Форма и размер зубцов электрокардиограммы зависит от положения электродов на поверхности тела. Существует биполярное и униполярное отведения.
Эйнтховен предложил использовать стандартные биполярные отведения: отведение 1 - между правой и левой руками; отведение II - между правой рукой и левой ногой; отведение III - между левой рукой и левой ногой.
При записи ЭКГ в стандартных отведениях конечности рассматриваются как проводники электрического тока. Следовательно, можно сказать, что потенциалы записываются в точках прикрепления конечностей. Эти точки формируют вершины равностороннего треугольника (треугольникЭйнтховена), стороны которого являются осями соответствующих отведений.

Для того чтобы получить униполярные отведения, 1 активный электрод устанавливается в некоторой точке поверхности тела. Есть несколько систем униполярных отведений, которые изучаются в деталях в ходе физиологии.

Дипольная теория электрокардиограммы

Чтобы понять происхождение электрокардиограммы нужно принять во внимание, что электрическое поле сердца является результатом наложения электрических полей множества сердечных клеток.
Мембранный потенциал покоящейся клетки не вызывает появления потенциала в любой точке тела. Клетка, несущая импульс, может быть поделена на две части: покоящуюся и активную. Покоящаяся часть имеет неизменный мембранный потенциал. Активная часть имеет потенциал, равный величине потенциала действия. Переход между двумя частями происходит в какой-либо точке.

В любой момент возбуждения, дипольные моменты отдельных клеток суммируются, формируя суммарный дипольный момент всего сердца. Суммарный дипольный момент сердца является результатом наложения дипольных моментов клеток. Вот почему сердце можно рассматривать как дипольный электрический генератор.
Направление суммарного дипольного момента сердца часто называют электрической осью сердца. Этот дипольный момент определяет величину разности электрических потенциалов, записанную на поверхности тела. Электрический потенциал, измеренный в любой точке, отдалённой от источника, зависит главным образом от величины суммарного дипольного момента сердца и угла между его

направлением и осью отведения ЭКГ
Одной из значимых проблем в электрокардиографии является определение направления электрической оси сердца. Его определяют, измеряя амплитуду (напряжение) отклонений ЭКГ в стандартных отведениях Эйнтховена. Стандартные отведения дают возможность изучать проекции электрической оси сердца на фронтальную плоскость.
Чтобы определить направление электрической оси сердца необходимо ввести некоторые упрощения:
- пренебречь электрическим сопротивлением конечностей;
- рассматривать треугольник Эйнтховена как равносторонний;
- считать, что сердце расположено в центре равностороннего треугольника.
Амплитуда (напряжение) каждого отклонения ЭКГ равна суммарному дипольному моменту сердца, умноженному на косинус угла между электрической осью сердца и осью соответствующего отведения (3). Эти амплитуды можно также определить как проекции суммарного дипольного момента сердца на соответствующие оси отведений, которые являются сторонами треугольника Эйнтховена.

Направление электрической оси сердца не является постоянным, но изменяется в каждый момент времени. Его удобно определять для комплекса QRS. Для этого необходимо измерить амплитуду отклонений Q, R и S в I и III стандартных отведениях и вычислить алгебраическую сумму величин положительного и отрицательного отклонений. Полученные разности отложить в произвольном масштабе на соответствующих сторонах треугольника Эйтховена, начиная от центра (в положительном или отрицательном направлении, в зависимости от того, положительна или отрицательна разность). Из полученных таким образом точек на осях отведений опустить перпендикуляры. Точка их пересечения укажет конец вектора электрической оси сердца (начало - в центре треугольника).
Чтобы определить направление электрической оси, необходимо измерить угол между полученным вектором и горизонтальной линией. В норме он составляет от 0 до +90 градусов. Существуют такие варианты направления электрической оси сердца: нормограмма (от 00 до +900): горизонтальное положение (от 00  до 400), нормальное (от 400 до 700)ти вертикальное (от 700  до 900); правограмма (от 900 до 1800), левограмма (от 00до - 900).


56 Моделирование биофизических процессов

При изучении сложных систем исследуемый объект может быть заменен другим, более простым, но сохраняющим основные, наиболее существенные для данного исследования свойства. Такой более простой объект исследования называется моделью. Модель - это всегда некое упрощение объекта исследования и в смысле его структуры, и по сложности внутренних и внешних связей, но обязательно отражающий те основные свойства, которые интересуют исследователя.

Моделирование - это метод, при котором производится замена изучения какого-то сложного объекта (процесса, явления) исследованием его модели.

На идее моделирования по существу базируется любой метод научного исследования как теоретический (при котором используется абстрактная модель), так и экспериментальный (используются предметные модели).



57 Модель естественного роста численности популяции

Модель Мальтуса

Им некот популяция одного вида, в кот происх жизн проц во всем их многообраз.

Основные допущения

Сущ только проц размн и естеств гибели, ск кот пропорц числ особей в данный момент врем.

Не учитываем биохимические, физиологические процессы.

Нет борьбы между особями за место обитания, за пищу (бесконечно большое пространство и количество пищи).

Рассматриваем только одну популяцию, нет хищников.

x – численность популяции в момент времени t

R – скорость размножения

γ – коэффициент размножения

R= γx скорость роста популяции

S – естественная убыль (гибель)

δ – коэффициент смертности

S=-δx

dx/dt=R+S= γx-δx=εx, где ε= γ-δ

ln(x/x0)=εt

Закон изменения популяции:

А) ε<0(при δ>γ), то есть ск гиб больше ск размн. Числ особей со вр упадет до нуля

Б) ε>0(при δ<γ), то есть ск размн больше ск гиб. Числ особей неогран растет со вр.

В) ε=0(при δ=γ), то есть ск гиб равна ск размн. Числ особи не изм, оставаясь на нач уровне.









58 Модель изменения численности популяции с учетом конкуренции между особями

Модель Ферхюльста

В модели Ферхюльста снято ограничение отсутствия борьбы. 

Рассм борьба особей за место обитания, добавляется доп ист гибели. Счит, что ск гибели за счет конкуренции между особями пропорц вероятн встреч двух особей. 

R=γx

S=-δx-∆x²

∆x² насильственная смерть

x(t)=x0ε/(ε-∆x)+∆x0



Математическая модель «хищник-жертва» (модель Вольтерра)

Имеется некоторая популяция 2-х видов – зайцы (жертвы) и рыси (хищника), в которой происходят жизненные процессы во всем их многообразии. Зайцы питаются растительной пищей, имеющейся в достаточном количестве (между зайцами отсутствует внутривидовая борьба). Рыси могут питаться только зайцами.

Использованные допущения:

1.    Два взаимодействующих вида: «хищник» и «жертва» обитают в некотором пространстве.

2.    В популяции «жертвы» нет борьбы за пространство и пищевые ресурсы; существуют процессы размножения, естественной гибели и гибели в результате встречи с «хищником».

3.    Вид «хищник» может питаться только видом «жертвой».

4.    В популяциях хищника и жертвы не учитываются биохимические и физиологические процессы.

 xt – число «жертв» в момент времени t;

 yt – число «хищников» в момент времени t;

dx/dt=γx-δx-αxy

α – вероятность встречи х и у

Umax – вероятность гибели травоядного

59. Фармокинетическая модель

Найдем законы изменения концентрации лекарственного препарата при различных способах и параметрах его введения и выведения.

В реальности ввод и вывод лекарства сопровождается большим числом разнообразных процессов. Это процессы всасывания в кровеносное русло при внесосудистом введении, перенос лекарства из крови к органам, удаление препарата из крови почками и др.

Основные допущения:

не будем рассматривать систему органов, через которые последовательно проходит лекарство. Исключим многостадийность процессов ввода, переноса, вывода лекарственного вещества.

не будем учитывать молекулярные механизмы процессов (например, проницаемость вещества, химические превращения)

Процессы ввода и вывода сведем к скорости.

Рассмотрим законы изменения c(t) при различных способах введения лекарства.



1 способ. Однократное введение лекарственного препарата – инъекция.

Представим себе организм как систему объемом V, после введения в которую лекарственного препарата массой m0, начинается его удаление из организма. Распределение препарата по организму предполагается равномерным. Скорость удаления p препарата из организма прямо пропорциональна его массе в организме: p=-km, k – коэффициент удаления препарата из организма. Скорость изменения массы лекарственного вещества в организме равна скорости его выведения p: dm/dt=p, следовательно, dm/dt=-km. Решение это дифференциального уравнения, с учетом начального условия, что при t=0 масса введенного лекарства m=m0, .

Концентрация лекарственного препарата в организме (например, в крови), c=m/V:

или , где V – объем крови, с0 – начальная концентрация

Концентрация лекарственного препарата в крови будет постепенно снижаться по убывающему экспоненциальному закону. Таким образом, при однократном способе введения лекарства не удаётся поддерживать в крови его постоянную концентрацию.

2-й способ. Непрерывное введение препарата с постоянной скоростью – инфузия (капельница).

В этом случае изменение массы лекарственного препарата в организме dm/dt определяется не только скоростью его удаления р, но и скоростью введения Q – количеством лекарственного вещества, вводимого в организм на единицу времени: dm/dt=Q-km. Решим это дифференциальное уравнение с учетом, что при t=0 масса m=0:

Введем новую переменную U=Q-km, dU=-kdm, dm=-dU/k, ∫dm/Q-km=1/k∫dU/U

Тогда получаем; и, наконец,

Концентрация лекарства в крови

В начальный момент времени t=0, c=0.

При t∞ величина 0 и cQ/kV

Через некоторое время после начала введения лекарства устанавливается постоянная концентрация c=Q/kV

3-й способ. Сочетание непрерывного введения лекарственного препарата с введением нагрузочной дозы. При этом фармакокинетическая модель привет вид: . Если выбрать соответствующие скорость введения лекарства Q=kVcопт и нагрузочную дозу m0=Q/k=Vcопт, постоянная концентрация с=сопт устанавливается мгновенно

60 Влияние физических полей на биосферу

Шумовое воздействие – одна из форм вредного физического воздействия на окружающую природную среду. Загрязнение среды шумом возникает в результате недопустимого превышения естественного уровня звуковых колебаний. С экологической точки зрения в современных условиях шум становится не просто неприличным для слуха, но и приводит к серьезным физиологическим последствиям для человека. В урбанизированных зонах развитых стран мира от действия шума страдают десятки миллионов людей.
Процессы взаимодействия электромагнитных полей с живой клеткой, живым организмом довольно сложные и в настоящее время в полной мере не исследованы. Взаимодействия электромагнитных полей с биологическим объектом определяется (23,25,26):

- параметрами излучения (частотой или длиной волны, когерентностью колебания, скоростью распространения, поляризацией волны);

- физическими и биохимическими свойствами биологического объекта, как среда распространения электромагнитных полей (диэлектрической проницаемостью, электрической проводимостью, длиной электромагнитной волны в ткани, глубиной проникновения, коэффициентом отражения от границы воздух - ткань).

Механизм воздействия УФ изучения на живые организмы до конца не изучен, тем более не возможно предсказать последствия выживаемости разных биообъектов при увеличении интенсивности УФ излучения и смещению его спектра в сторону коротких волн. Этот процесс крайне нежелателен. Человечеству нужно позаботиться, чтобы атмосфера и озоновый слой оставались надежной защитой от губительного коротковолнового УФ излучения.

61 Электромагнитные волны. Спектр электромагнитных колн

Электромагнитные волны представляют собой поперечные волны и, в этом, аналогичны другим типам волн. Однако в ЭМВ происходят колебания полей, а не вещества, как в случае распространения волн на воде или в натянутом шнуре.

Векторы напряженности и электромагнитного поля удовлетворяют волновым уравнениям типа и , где - оператор Лапласа, ν – фазовая скорость

Фазовая скорость ЭМВ определяется выражением

, где -скорость света в вакууме







В веществе скорость распространения электромагнитных возмущений меньше в раз.

Скорость распространения электромагнитных волн в среде зависит от ее электрической и магнитной проницаемостей. Величину называют абсолютным показателем преломления. С учетом последнего имеем: и

Следовательно, показатель преломления есть физическая величина, равная отношению скорости электромагнитных волн в вакууме к их скорости в среде.

- волновое число

ω – круговая частота, φ – начальная фаза колебаний в точках с координатой х=0, ν – фазовая скорость

Таким образом:

Векторы ,,взаимно перпендикулярны, т. к. инаправлены одинаково



электромагнитная волна является поперечной;

электрическая и магнитная составляющие распространяются в одном направлении;

Векторы , колеблются в одинаковых фазах

Распространение электромагнитных волн связано с переносом ЭМ энергии (подобно тому, как распространение упругих волн в веществе связано с переносом механической энергии). Сама возможность обнаружения ЭМВ указывает на то, что они переносят энергию.

ЭМВ - способ передачи энергии и информации (в вакууме)

Объемная плотность энергии wэлектромагнитной волны



Поток энергии через единичную площадку, перпендикулярную направлению распространения волны в единицу времени:

Вектор плотности потока электромагнитной энергии называется вектором Умова-Пойнтинга:

Существование давления ЭМВ приводит к выводу о том, что электромагнитному полю (световым квантам) присущ электромагнитный импульс и масса.



Шкала ЭМВ

В оптике условно рассматривается три области:

Длина волны (λ) < размеров приборов;

геометрическая оптика.

λ сравнима с размеров приборов;

волновая оптика.

Λ < размеров приборов;

квантовая оптика.





1   2   3   4   5   6   7   8   9
написать администратору сайта