Главная страница
Финансы
Экономика
Математика
Начальные классы
Информатика
Биология
Медицина
Сельское хозяйство
Ветеринария
Вычислительная техника
Дошкольное образование
Логика
Этика
Религия
Философия
Воспитательная работа
История
Физика
Политология
Социология
Языки
Языкознание
Право
Юриспруденция
Русский язык и литература
Промышленность
Энергетика
Другое
Доп
образование
Строительство
Физкультура
Технология
Связь
Автоматика
Электротехника
Классному руководителю
Химия
Геология
Иностранные языки
Логопедия
Искусство
Культура
География
Экология
ИЗО, МХК
Директору, завучу
Казахский язык и лит
Школьному психологу
Языки народов РФ
Обществознание
Социальному педагогу
ОБЖ
Механика
Музыка
Украинский язык
Астрономия
Психология

Теория вся. Физические модели


Скачать 262.5 Kb.
НазваниеФизические модели
АнкорТеория вся.doc
Дата29.04.2017
Размер262.5 Kb.
Формат файлаdoc
Имя файлаТеория вся.doc
ТипДокументы
#590
КатегорияФизика
страница1 из 4
  1   2   3   4

Кинематика изучает движение тел, не рассматривая причин этого движения

ФИЗИЧЕСКИЕ МОДЕЛИ:

Материальная точка – это тело, размером которого по условиям данной задачи можно пренебречь. Возможность не учитывать размеры тела при механическом движении определяется не размерами самого тела, а условиями рассматриваемого движения. Например, космический корабль при описании его движения по орбите может быть взят в качестве материальной точки, а космонавт, находящийся внутри этого корабля не может считаться материальной точкой.

Абсолютно твердое тело – это тело, которое не при каких условиях не деформируется, т.е. расстояние между любыми 2мя его точками остается постоянным. Существование абсолютно твердых тел запрещено теорией относительности.

Система отсчета – одно или несколько тел, относительно которых рассматривается движение данного тела.

Кинематическое описание движения тела: уравнение движения материальной точки при координатном способе задания

[ r = i * x ( t ) + j * y ( t ) + k * z ( t ) ].

Число степеней свободы – число независимых координат, определяющих положение точки в пространстве.

Поступательное движение – это движение, при котором любая прямая линия, связанная с телом остается параллельной сама себе.

Вращательное движение – это такое движение тела, при котором каждая точка тела движется по окружности, центр которой лежит на одной прямой, оси вращения.

Траектория – линия, вдоль которой движется тело.

Путь – длинная траектории.

Вектор, соединяющий начальную и конечную точки траектории, называется перемещением.

Скорость показывает простоту изменения тела в пространстве.

Пусть моменту времени t1 соответствует радиус-вектор r1 движущейся точки, а близкому моменту времени t2 – радиус-вектор r2. Тогда за малый промежуток времени (delta) t точка совершит малое перемещение, равное (delta) s = (delta) r = r2 - r1. (рисунок – веторы r1, r2 выходят из нуля к точке 1, 2 на кривой; точки 1 и 2 соединены и образуют вектор deltaR; вектор средней скорости проходит через 1 и 2, а просто скорость выходит из точки по прямой). v (среднее) = < v > = (delta) s / (delta) t = (delta) r / (delta) t . Вектор средней скорости направлен вдоль вектора перемещения.

Более полно описать движение позволяет мгновенная скорость, т.е. скорость в любой момент времени. Она равна lim (при delta t 0) delta r / delta t = r ‘ ( t ). Вектор мгновенной скорости направлен по касательной траектории данной точки. Модуль полной скорости равен:

| v | = (корень) v (ст.2) по х + v (ст.2) по y + v (ст.2) по z

Ускорение показывает скорость изменения скорости. a ( среднее ) = delta v / delta t. (рисунок – точка на полуокружности, от нее 2 вектора скорости, вверх и вправо, их соединяет delta v, вдоль нее уходит в некуда вектор среднего ускорения). Мгновенное ускорение – a = lim (delta t  0) delta v / delta t = dv / dt = v ‘ (t). Направление вектора ускорения составляет некоторый угол с вектором скорости. Угол АЛЬФА между векторами скорости и ускорения может изменяться в пределах 0 <= АЛЬФА <= ПИ. Углы АЛЬФА=0 и АЛЬФА=ПИ соответствуют прямолинейному движению. При 0 <= АЛЬФА <= ПИ/2 модуль скорости возрастает, при ПИ/2 < АЛЬФА <= ПИ модуль скорости убывает. При АЛЬФА = ПИ/2 модуль скорости не изменяется.

Вектор ускорения АЛЬФА при криволинейном движении тела обычно представляют в виде суммы двух составляющих, направленных следующим образом: одна по касательной к траектории – это тангенсальное ускорение, вторая по нормали к касательной – нормальное ускорение.

a (нормальное) = v (ст.2) / R //// a (тангенсальное) = dv / dt ///// | a | = (корень) a тангенсальное (ст.2) + a нормальное ст.2.

Прямолинейное ускоренное движение. Если матерьяльная точка движется по прямолинейной траектории, то ее нормальное ускорение равно 0. Модуль полного ускорения равен модулю тангенсального. (рисунок – полуокружность, на ней точка, тангенсальное ускорение напралено по касательной, а нормальное перпендикулярно ей, сумма векторов дает ускорение). Т.к. тангенсальное ускорение характеризует только изменение модулю скорости: a = а тангенсальное = dv / dt = v ‘ ( t ). Если модуль скорости возрастает, то тангенсальное ускорение положительно, а вектор тангенсального ускорения направлен вдоль вектора скорости. Если же модуль скорости убывает, то тангенсальное ускорение отрицательно, а вектор тангенсального ускорения направлен противоположно вектору скорости.

S = интеграл от v * dt

Движение точки по окружности. При равномерном движении мат.точки по окружности радиус-вектор r точки описывает за время deltaT равные углы deltaФИ. Отношение deltaФИ / deltaT = ОМЕГАмаленькое, называемое угловой скоростью, остается постоянным. За время deltaT = Tбольшое, за которое совершается один оборот, радиус-вектор повернется на угол deltaФИ = 2ПИ. Следовательно ОМЕГАмал. = 2ПИ / T. Учитывая, что частота вращения v = 1 / T, получим ОМЕГАмал = 2ПИv.

Модуль скорости при таком движении (линейная скорость) равен производной от длины дуги по времени: скоростьV = ds / dt = s’ ( t ).

(рисунок – окружность, 2 точки, расстояние между ними deltaS, от нуля до точек проведены вектора r, угол между ними deltaФИ). Так как deltaS = r * deltaФИ, то между модулями линейной и угловой скорости получается:

v = r dФИ / dt = r ОМЕГАмал. Так как модуль скорости остается неизменным, а вектор скорости меняется по направлению, то ускорение в этом движении связано только с изменением направления скорости, т.е.

вектор a нормальное = lim (при delta t 0) вектор delta v нормальное / delta t = dv нормальное / dt.

(рисунок – точки A и D на окружности, delta s, r, угол АЛЬФА между радиус-векторами, вектор скорости по касательной к точке A v1 и тоже к точке D v2; проекция v2 к точке A; теперь расстояние между v1 и v2 = BC = delta v нормальное; расстояние от точки A до D = delta t)

Из рисунка видно, что треугольник ABC равнобедренный. Если delta t  0, то угол АЛЬФА между векторами v1 и v2 также стремится к нулю, т.к. сумма углов в треугольнике равна ПИ, то угол между векторами delta v нормальное и v в пределе равен ПИ/2. Следовательно вектор нормального ускорения перпендикулярен вектору скорости. Т.к. вектор скорости всегда направлен по касательной, то вектор ускорения направлен по радиусу к центру окружности.

Если матерьяльная точка движется по окружности с постоянной по модулю скоростью, то это движение происходит с ускорением, направленным в каждый момент времени перпендикулярно вектору скорости.

a нормальное = v (ст.2) / r = v ОМЕГАмал = ОМЕГАмал. (ст.2) r = 4ПИ (ст.2) r / T (ст.2) = 4ПИ (ст.2) v (ст.2) r

Угловое ускорение: Е = dw / dt.

В случае равноускоренного движения –

ФИ = ФИ нулевое + w нулевое * t + E * t (ст.2) / 2

Произвольное криволинейное движение:

a = a тангенсальное = dv / dt = v ‘ ( t )

a нормальное = v / r * lim (при delta t 0) delta s / delta t = v (ст.2) / r

Причем r в выражении – это не радиус окружности, а радиус кривизны траектории в этой точку.
1.2 Динамика поступательного движения

Динамика изучает движения тел и причины, вызывающие это движение.

Чтобы решить основную задачу механики, необходимо выбрать рациональную систему отсчета и выяснить причины возникновения ускорений. Раздел механики, где решаются эти задачи называется динамикой. Механику, основанную на законах Ньютона называют классической механикой.

Масса – мера количества вещества. F=ma, F=G * m1 * m2 * / R*R

Импульс тела – количество движения. P = m v (вектор) – справедливо для матерьяльной точки. Если тело имеет конечный размер, то импульс этого тела можно найти как векторную сумму импульсов матерьяльных точек, на которое можно разбить это тело. P – импульс.

Сила – мера взаимодействия тел друг с другом. 4 вида взаимодействий:

1. Гравитационное – взаимодействие притяжения 2х тел, обладающих массой.

2. Слабые взаимодействия – ответственно за некоторые виды распада элементарных частиц, в частности за бета-распад.

3. Электро-магнитные взаимодействия – кулоновская и лоренцева силы.

4. Сильное взаимодействие – обеспечивает связь нуклонов в ядре. Закон всемирного тяготения:

F=G m1 m2 / R * R; Fk = (1 / 4ПИ * Rнулевое) * (E1 E2 / R * R);

Fл = kq[v,b (векторы)]


1 закон Ньютона: Если на тело не действуют никакие силы или равнодействующая всех сил равна нулю, то тело находится в состоянии покоя или равномерного прямолинейного движения. Согласно этому закону всякое тело, не подверженное внешнему воздействию находится в покое, либо движется равномерно и прямолинейно.

Первый закон выполняется только в инерциальных системах отсчета. В инерциальных системах отсчета ускорение тела может быть вызвано только его взаимодействием с другими телами.

2 закон Ньютона: F = ma (F,a-векторы); a = F / m; ma=F1+F2+…+Fn;

a=dv/dt; F=m dv / dt = d(wv) / dt = dP / dt; [ F = dP / dt ]; В таком виде 2ой закон применяется для описания движения тела с переменной массой.

Fх= dPx / dt= m dVx / dt= m d2 X / d t*t; Fy= m d2 Y / d t*t; Fz= m d2 Z / t*t

3 закон Ньютона: 2 тела действуют друг на друга с силами, направленными вдоль одной прямой. Эти силы равны по величине и противоположны по направлению. 3-ий закон позволяет перейти от динамики отдельной матерьяльной точки к динамике системы матерьяльных точек. Это следует из того, что и для сист.мат. точек взаимодействия этих матерьяльных точек сводятся к парным взаимодействиям.
1.3 Закон сохранения импульса

Замкнутой системой матерьяльных точек называется система матерьяльных точек, рассматриваемое как единое целое. Силы, действующие между матерьяльными точками, входящими в замкнутую систему называются внутренними. Силы, с которыми на мат.точки замкнутой системы действуют внешние тела, называются внешними.

Согласно 3му закону Ньютона геометрическая сумма внутренних сил равна нулю.

(F’ – внутр., F – внеш.) Пусть система состоит из n матерьяльных точек:

[знак системы] d (m1 v1) / dt = F1’ + F1; ….; d (mn vn) / dt = Fn’ + Fn.

Сумма всех внутренних сил F’ = 0 !!! F, P – векторные величины

(d / dt) * (m1 v1 + … + mn vn) = F1 + … +Fn

dP / dt = F , где F – равнодействующая всех внешних сил, приложенных к замкнутой системе матерьяльных точек. F = 0  dP / dt = 0  P = const

Закон сохранения импульса: Если равнодействующая всех сил, приложенных к замкнутой системе матерьяльных точек равна нулю, то суммарный импульс в замкнутой системе остается постоянным.

Закон сохранения импульса является одним из фундаментальных законов физики. Он справедлив не только в классической механике, но и в квантовой. Закон сохранения импульса является следствием определенного свойства симметрии пространства – его однородность. При параллельном переносе в пространство замкнутой системы как целого, ее физические свойства и законы движения не изменяются. Импульс системы матерьяльных точек может быть выражен через импульс центромасс этой системы.

(рисунок – ось ОХ, точки 0, x1, x0, x2; от x1 и x2 вниз идут вектора – m1, m2 - масса; расстояние от x1 до x0 = Xc – X1; от x0 до x2 = X2 – Xc)

m1 g (Xc – X1) = m2 g (X2 – Xc); m1 Xc – m1 X1 = m2 X2 – m2 Xc;

(m1 + m2) Xc = m1 X1 + m2 X2; Xc = (m1 X1 + m2 X2) / m; m= m1 + m2;

Xc= (сумма Mi Xi) / m ; r центромасс = (сумма m * r) / m ;

v центромасс = dr / dt = (d / dt)*([сумма m*v] / m) = (сумма m * dv / dt) / m =

(сумма m*v) / m = P / m ; P = m * v центромасс ; Видно, что сумма импульсов замкнутой системы матерьяльных точек равен импульсу центромасс этой системы – dP / dt = F1 +…+Fm ;

m * (dv центромасс / dt) = F1+…+Fm

dP / dt = F ; dP = F * dt. Произведение силы на время ее действия называется импульсом силы.

Реактивное движениею Уравнение Мещерского.

(рисунок – летящая ракета, подписи – t+dt ; m –dm ; v+dv ; над хвостом подпись – dm (u+v)). dP = (m – dm)(v dv) + (u + v)dm – mv = mv +vdm + mdv – dm dv + udm + vdm – mv = mdv + udm. dP = mdv + udm ; Разделим обе части на dt: dP / dt = mdv / dt + udm / dt ; ma = F – udm / dt ; Fp = udm / dt (реактивная сила). [m*a = FFp] – уравнение Мещерского.

Если внешние силы на систему не действуют, то F=0 ; ma = - udm / dt ;

mdv / dt = - udm / dt; mdv = - udm; dv = - udm / m ;

v = - (интеграл от m 0 до m 0 – m) udm / m = - u (интеграл) dm / m =

= u*ln (m 0 /m 0 - m). Уравнение цеалковского [v = u*ln (m 0 / m0 - m)]

v – конечная скорость, u – скорость истока газа, m – масса ракеты.
1.4. Закон сохранения энергии.

Работа и кинетическая энергия. Мощность.

В качестве единой количественной меры различных форм движения материи и соответствующих им взаимодействий в физике вводится скалярная величина, называемая энергией.

Движение – неотъемлемое свойство материи, поэтому любое тело, любая система тел и полей обладает энергией.

Энергия системы количественно характеризует систему в отношении возможных в ней превращений движений.

Изменение механического движения тела и следовательно его механической энергии возможно за счет действия на это тело других тел, т.е. сил. Элементарной работой, силой F, называется величина, равная

dA = F * dr = F dr cosАЛЬФА ; |dr| = ds ; Работа равна нулю в том случае, если: 1. тело неподвижно dr = 0  dA= 0. 2. АЛЬФА=+ - ПИ/2, dA= 0.

dA>0, если АЛЬФА – острый угол и dA< 0, если АЛЬФА – тупой угол.

Вектор F (Fx, Fy, Fz) ; вектор dr (x, y, z) ; dA= F*dr = Fx*dx+Fy*dy+Fz*dz

A = (интеграл от 1 до 2) Fdr – работа силы по перемещению тела из 1 в 2.

Другой вариант записи – A = (интеграл от 1 до 2) Ft ds.

Кинетическая энергия – это энергия механического движения. Изменение кинетической энергии происходит за счет работы внешних сил.

dVk = dA = Fdr ; dr = vdt ; dWk = Fdr = F v dt = vdP

F = dP / dt = 1/m * vdP = d(P[ст.2] / 2m) ; dWk = d(P[ст.2] / 2m) ;

Wk = P[ст.2] / 2m = mv(ст.2) / 2

Связь между кинетическими энергиями в различных системах отсчета.

(рисунок – точка, 2 системы координат k и k’, проведены 2 радиус-вектора от начала отсчета – r и r ’) r итое = r нулевое + r итое ' ;

v итое = dv / dt = (dr нулевое / dt) + (dr итое штрих / dt) = v нулевой + v итое’

v итое = v нулевое + v итое' ; v итое в кв. = v нулевое в кв. +2 v нулевое v итое’ + v итое’ в кв. Wk = сумма mi vi в кв. / 2 = v нулевое в кв. * сумма[mi /2] + 2 v нулевое * сумма[mi vi / 2] + 1/2 *сумма[mi vi’ в кв.] – кин. энергия.

Если выбрать начальную систему отсчета k’ в центре масс, то vc’=0 и среднее слагаемое в кинетической энергии равно 0.

Теорема Кёнита – Wk = Wk’ + mvo2/2

Кинетическая энергия механической системы равна сумме кинетических энергий этой системы, ее движение относительно центромасс и кинетической энергии, которая имела бы рассматриваемая система, двигаясь поступательно со скоростью ее центромасс.

--------------------------------------------------------------------------------------------------

Энергия движения системы как целого.

Рассмотрим систему из n матерьяльных точек. Общая работа dA, совершаемая всеми силами, приложенными к системе за время dt, будет

dA= сумма [Fi * dr итое]. Покажем, что суммарная работа, совершаемая всеми другими силами системы равна 0. Возьмем 2 точки системы – i и k.

(рисунок – прямая, на концах стрелки – слева Fik, справа Fki; на ней 2 точки i и k; соединенены вектором r ik; другая точка, от нее радиус-векторы r i и r k). Согласно 3мц закону Ньютона Fik = - Fki.

dAik = Fik*dri + Fki*drk = Fik*dri – Fik*drk = Fik (dri - drk) ; dri – drk = drik.

[i, k – это индексы!!!]. Т.к. тело абсолютно твердое, то Fik*drik = const (т.к. для абсолютно твердого тела расстояние между любыми 2мя его точками остается в процессе движения неизменным). drik – т.к. |rik|= const, то вектор rik может менять только свое направление, следовательно изменение этого вектора будет направлено перпендикулярно вектору drik. Сила Fik перпендикулярна перемещению drik, следовательно такая сила работы не совершает – dAik = Fik*drik = 0, т.е. внутренние силы работы не совершают.

dA = сумма Fi*dri (где F – внешняя сила).

Если тело движется поступательно, то dri = drc ; dA= сумма Fi * drc = drc * сумма Fi = F *drc ; Получаем dA= F * drc ; Работа всех сил, приложенных к системе матерьяльных точек равна работе внешних сил по перемещению центромасс этой системы. Wk = сумма mi * vi(ст.2) / 2 = mvc(ст.2) / 2.

[Где c, k, i – индексы!!!]

--------------------------------------------------------------------------------------------------
  1   2   3   4
написать администратору сайта