Главная страница
Финансы
Экономика
Математика
Начальные классы
Биология
Информатика
Медицина
Сельское хозяйство
Ветеринария
Дошкольное образование
Вычислительная техника
Воспитательная работа
История
Этика
Религия
Философия
Логика
Физика
Социология
Политология
Русский язык и литература
Языкознание
Языки
Юриспруденция
Право
Другое
Строительство
Доп
образование
Промышленность
Энергетика
Физкультура
Связь
Электротехника
Автоматика
Технология
Классному руководителю
Иностранные языки
Химия
Геология
Логопедия
География
Культура
Искусство
Экология
ИЗО, МХК
Школьному психологу
Директору, завучу
Обществознание
Казахский язык и лит
ОБЖ
Социальному педагогу
Языки народов РФ
Музыка
Механика
Астрономия
Украинский язык
Психология

ГДС Маг.методи. Контрольна робота 3 курсу Геофізичне дослідження свердловин


Скачать 0.83 Mb.
НазваниеКонтрольна робота 3 курсу Геофізичне дослідження свердловин
АнкорГДС Маг.методи.docx
Дата07.04.2018
Размер0.83 Mb.
Формат файлаdocx
Имя файлаГДС Маг.методи.docx
ТипКонтрольна робота
#15429

Міністерство освіти та науки України

Київський національний університет ім. Т.Г. Шевченка
ГЕОЛОГІЧНИЙ ФАКУЛЬТЕТ

(заочне відділення)
КОНТРОЛЬНА РОБОТА

3 курсу: «Геофізичне дослідження свердловин»
Магнітні і ядерно-магнітні методи геофізичного дослідження свердловин

ВИКОНАВ:

студент 5-го курсу групи геофізиків Піголенко В.А.

ПЕРЕВІРИВ:

професор Курганський В.М.

Київ-2010

Магнитный каротаж

Магнитный каротаж основан на изучении магнитных характеристик горных пород и напряженности геомагнитного поля в породах, вскрытых скважиной.

Он включает:

  • каротаж естественного магнитного поля, основанный на изучении: вектора (модуля вектора) Т напряженности геомагнитного поля или его составляющих Х, Y, Z; приращений полного вектора или его составляющих (ΔT, ΔZ); компонент нормального (Тн, ) и аномального (Та, Za) поля. Единица измерения в системе СИ - тесла (Тл), дробная единица - нанотесла (1 нТл=10-9 Тл). Радиус исследований при каротаже естественного магнитного поля изменяется от нескольких метров до 100-150 м в зависимости от геометрии и магнитных свойств влияющего объекта;

  • каротаж магнитной восприимчивости (КМВ), основанный на изучении искусственного переменного электромагнитного поля, величина ЭДС которого определяется магнитной восприимчивостью горных пород. Допускается выражение результатов измерений в единицах СИ или СГС, связанных между собой соотношением χ (СИ)=4πχ (СГС). Радиус исследований составляет 10-60 см.

Магнитный каротаж применяют:

  • для определения магнитной восприимчивости и намагниченности пород в разрезах параметрических скважин;

  • для литологического расчленения и корреляции геологических разрезов;

  • для выделения интервалов разреза, содержащих магнитные минералы и зоны оруденения;

  • для определения элементов залегания пород, которые дифференцируются по магнитным свойствам;

  • для обеспечения интерпретации наземных магниторазведочных работ.

Магнитный каротаж выполняют в необсаженных скважинах. Дополнительными ограничениями являются присутствие в промывочной жидкости добавок ферромагнитных минералов (гематита) и влияние металлических конструкций скважины в радиусе исследования зондов.

Для проведения магнитного каротажа применяют: скважинные каппаметры - для исследования магнитной восприимчивости среды; скважинные магнитометры для измерения напряженности магнитного поля. Рекомендуется использовать приборы, сочетающие оба модуля.

Основные требования к приборам для магнитного каротажа: определение магнитной восприимчивости χ и модуля вектора Т напряженности геомагнитного поля и его составляющих; возможность исследования слабомагнитных разрезов с χ<10-4 ед. СИ и аномалиями магнитного поля менее 10000 нТл.

Минимальные требования к методическому обеспечению: для каротажа магнитной восприимчивости - программы учета влияния скважины; для каротажа естественного магнитного поля - учет влияния кривизны скважины; расчет модуля вектора Т напряженности геомагнитного поля.

Калибровку каппаметров на скважине выполняют до и после каротажа с использованием рабочих мер магнитной восприимчивости, тестов или стандарт-сигналов. Прибор должен располагаться на расстоянии не менее 5 длин зонда от металлических предметов.

Калибровку магнитометров выполняют при помощи меры магнитной индукции или градуировочного комплекта на контрольных пунктах: района (статус периодической калибровки) и скважины (полевая калибровка). Измерения на контрольных пунктах выполняют приборами и оборудованием (геофизический кабель, регистратор и др.), которые используются при проведении скважинных исследований.

Контрольный пункт района должен быть расположен в условиях нормального магнитного поля; целесообразно использовать для этого контрольные пункты наземной магниторазведки. На контрольном пункте района выполняют: периодическую калибровку магнитометров; измерение компонент нормального поля; оценку основной погрешности измерений по воспроизводимости результатов.

Контрольный пункт скважины выбирают по карте изодинам магнитного поля в области наименьшего градиента на удалении не менее 50 м от металлических предметов (каротажная станция, обсадка скважины и др.). Расстояние до устья скважины и азимут направления документируются в файлах измерений. На контрольном пункте скважины проводят: полевую калибровку магнитометров; измерение компонент магнитного поля для привязки результатов измерений в скважине к наблюдениям на поверхности.

До начала и после измерений (не позднее 2-3 мин после извлечения прибора из скважины) проводят регистрацию нуль - и стандарт-сигналов.

Скорость каротажа и шаг дискретизации по глубине не должны превышать 1000 м/ч и 0.2 м соответственно.

Во время проведения каротажа методом естественного магнитного поля рекомендуется параллельное измерение вариаций магнитного поля на контрольном пункте скважины вторым скважинным или наземным магнитометром. Такие измерения являются обязательными в следующих случаях: интервал магнитного каротажа превышает 1000 м; по результатам магниторазведочных работ установлено, что амплитуды короткопериодных вариаций превосходят погрешности измерений. Исследования магнитным каротажем не проводят во время магнитных бурь.

В интервалах проведения каротажа магнитной восприимчивости обязательно выполнение кавернометрии, а каротажа магнитного поля - инклинометрии.

Первичная обработка данных магнитного каротажа должна обеспечивать решение качественных задач (расчленение разреза по магнитным свойствам и др.).

Для каротажа магнитной восприимчивости регламентируется установка нулевых линий по уровню сигнала в воздухе до и после наблюдений и введение поправок в результаты измерений за влияние скважины (при необходимости).

Для каротажа естественного магнитного поля выполняются: учет влияния кривизны скважины; расчет модуля вектора Т напряженности геомагнитного поля (при измерении его составляющих); расчет показателей аномального магнитного поля. Переход от измеренных компонент полного магнитного поля к компонентам аномального поля осуществляют вычитанием уровня нормального поля, установленного на контрольном пункте скважины (при необходимости, с учетом измеренных вариаций). В случае измерения приращений поля (ΔТ, ΔZ) уровень поля, найденный на контрольном пункте скважины, принимают за нулевой.

К магнитному близок метод ядерно-магнитного каротажа (ЯМК), в котором изучается свободная прецессия протонов жидкости, окружающей ствол скважины. Этот метод может применяться для изучения коллекторских свойств пород и их водонасыщенности.

Физические основы метода

Датчиком магнитной восприимчивости в скважинной аппаратуре служит катушка индуктивности, намотанная на ферритовом стержне длиной 10-12 см. Индуктивное сопротивление катушки зависит от электромагнитных свойств среды, в которой она находится. Для измерения изменений индуктивного сопротивления катушки ее включают в мост переменного тока (мост Максвелла) или в схему LC-генератора, выходная частота которого зависит от индуктивности датчика, то есть от магнитной восприимчивости окружающей среды.



Конструкция датчика аппаратуры КМВ.

Интерпретация результатов КМВ

С помощью КМВ (каротажа магнитной восприимчивости) решаются такие задачи, как литологическое расчленение разрезов скважин, определение контактов и мощностей интервалов с повышенными магнитными свойствами, определение истинной величины магнитной восприимчивости пород и руд, определение процентного содержания железа в рудах.

Литологическое расчленение разрезов по данным КМВ основано на различном содержании магнитных минералов (в основном, магнетита) в разных горных породах. Из изверженных пород минимальными значениями магнитной восприимчивости характеризуются породы кислого состава - граниты, сиениты и другие; повышенными - породы основного и ультраосновного состава; из осадочных пород наибольшими значениями отличаются глины.

Определение границ интервалов с повышенными магнитными свойствами выполняется по правилу полумаксимума аномалии, так как расчеты и измерения на моделях показывают, что аномалии на кривых магнитной восприимчивости имеют простую форму, симметричную относительно середины интервала.

Горная порода

Магнитная восприимчивость,

Гранит

5-100

Габбро

150-600

Перидотит

380-1500

Известняк

0-5

Песчаник

0-100

Глина

0-500

Мрамор

0-5

Сланцы

5-500

Магнетитовая руда

75000-150000




Аномалии КМВ над пластами различной мощности с повышенной магнитной восприимчивостью.

Если мощность пласта h меньше длины l датчика χ(магнитной восприимчивости), то ширина аномалии перестает зависеть от h и становится равной l в середине аномалии появляется небольшое понижение, а ее максимум не достигает того значения, которое он мог бы иметь при большей мощности пласта.

Истинная магнитная восприимчивость пород и руд должна определяться для количественной интерпретации данных полевой магнитометрии. Величину Кист находят по результатам градуировки скважинных каппаметров, для чего изготавливают набор специальных эталонов, каждый из которых представляет собой картонный или пластмассовый барабан с цилиндрическим отверстием вдоль оси. Внешний диаметр барабанов должен, по крайней мере, вдвое превышать длину датчика χ, а диаметр центрального отверстия должен быть равен диаметру исследуемых буровых скважин. Высота барабанов должна быть в 4-5 раз больше длины датчика. Барабаны заполняют смесью скульптурного гипса или цемента с измельченным магнетитом.

Магнитную восприимчивость каждого эталона определяют с помощью контактного (лабораторного) каппаметра. При градуировке скважинный снаряд помещают внутрь отверстия барабана так, чтобы датчик располагался в середине отверстия по высоте и был прижат к его стенке. На каждый измерительный диапазон скважинного каппаметра должно быть изготовлено 3-4 эталона с различной магнитной восприимчивостью.



Размещение скважинного прибора КМВ внутри эталона магнитной восприимчивости при градуировке.



Градуировочный график аппаратуры КМВ.

Определение процентного содержания железа по диаграммам КМВ основано на том, что между ним и величиной магнитной восприимчивости магнитных руд существует корреляционная зависимость:



В общем случае эта зависимость не является линейной. Для определения можно использовать не истинные значения , а отсчеты n, снятые, непосредственно с диаграмм КМВ. Поскольку , то и , причем последняя зависимость получается даже более близкой к линейной, чем .

Для экспериментального построения зависимости используют скважины с хорошим (близким к 100 %) выходом керна. Керн, отобранный из рудных интервалов, опробуют и определяют содержание в нем железа с помощью химического анализа. С диаграмм КМВ снимают осредненные значения магнитной восприимчивости или средние отсчеты n против опробованных интервалов. Зависимость отсекает на оси содержаний небольшой отрезок р, который характеризует содержание в рудах железа, приходящегося на его немагнитные минералы (силикаты или карбонаты).



Зависимость показаний КМВ от содержания железа в руде. Диаметр скважины 79 мм, месторождение Северо-Песчанское (по О.Н. Молчанову).

Содержание железа в руде может быть рассчитано как , где А - угловой коэффициент, показывающий, сколько процентов железа соответствует единичному отсчету по шкале измерительного прибора. Кстати, слагаемое характеризует то количество железа, которое может быть извлечено из руды при ее магнитной сепарации.

Погрешность определения содержаний описываемым способом составляет 1-2 %.

Описанные зависимости составляют обязательно для одного и того же диаметра скважины, поскольку диаметр скважины влияет на результаты измерений. По этой же причине КМВ обязательно сопровождают кавернометрией.

Зависимости , построенные для одного месторождения, не применимы для других, поскольку они являются не функциональными, а статистическими, и на них влияет еще целый ряд других факторов, таких, как минеральный состав руд, их структура и текстура и т.п.

Так, например, железистые кварциты с содержанием Fe 21 % имеют =3 ед. СИ, а у диабазов с содержанием Fe 27 % - =0,9 ед. СИ.

Скважинная магниторазведка

Скважинная магниторазведка заключается в измерении напряженности земного магнитного поля в скважинах. Поскольку в большинстве скважинных магнитометрах измерения вектора напряженности магнитного поля осуществляются по его трем пространственным составляющим, то и метод получил название трехкомпонентной скважинной магниторазведки (ТСМ). Напряженность магнитного поля в скважинах зависит не только от магнитных свойств пород, слагающих стенки скважины, но и от наличия намагниченных объектов, находящихся в десятках и сотнях метров от скважины.

Физические основы метода

Для измерений в ТСМ используют систему из 3-х взаимно перпендикулярных магнитомодуляционных датчиков (ММД), ориентированных по осевой или вертикальной схеме. Ориентировка осуществляется под действием силы тяжести с помощью эксцентрично расположенных грузиков. При этом датчик Х-составляющей располагается в вертикальной плоскости, проходящей через ось скважины в точке измерения, а датчик Y-составляющей - горизонтально, перпендикулярно этой плоскости.



Ориентировка датчиков магнитометра по осевой (а) и вертикальной (б) схеме.

Поскольку на датчики в скважине воздействует суммарное магнитное поле Т, складывающееся из нормального и аномального Та полей, то вектор напряженности аномального поля, представляющий интерес с точки зрения разведки полезных ископаемых, вычисляют как разность:



где X, Y, Z - составляющие магнитного поля, измеренные в скважине;

Хо, Yo, Zo - составляющие нормального магнитного поля, измеренные на контрольном пункте;

i, j, k - единичные векторы-орты.

Сложность обработки результатов ТСМ заключается в том, что из-за применения гравитационных ориентаторов ориентировка системы датчиков в скважине зависит от углов искривления последней и не остается постоянной в процессе измерений. Соответственно, не остаются постоянными и значения составляющих нормального поля Хо, Yo, Zo, которые нужно вычитать из измеренных значений X, Y, Z. Необходимые значения Хо, Yо, Zo для соответствующих углов искривления скважины снимают с графиков нормального поля, которые заблаговременно строят по результатам измерений на контрольном пункте при различных ориентировках скважинного снаряда.



Графики зависимости составляющих нормального поля Земли от углов искривления скважины при вертикальной (а) и осевой (б) схемах ориентировки датчиков скважинного магнитометра.

Точность скважинной магнитометрии из-за погрешностей ориентировки датчиков не превышает ±100 нТл, поэтому различные вариации земного магнитного поля в ней не учитывают.

Методика работ

Измерения в скважинах, как правило, выполняют в 2 этапа. На первом этапе измеряют и Z - составляющую. В случае если в скважине выявляется аномалия Z - составляющей, которую невозможно объяснить зарегистрированной величиной , проводят второй этап - измеряют Х и Y - составляющие для того, чтобы определить, в каком направлении от скважины находится объект, создающий аномалию магнитного поля. Измерения могут проводиться как на отдельных точках, так и непрерывно, обработка проводится только по отдельным точкам.

Интерпретация результатов

Интерпретацию результатов ТСМ выполняют по кривым Za и , а также по векторам Та. Поскольку ориентировка векторов Та в пространстве не постоянна, то для упрощения их изображения и интерпретации строят проекции векторов Та на плоскость продольного (по простиранию пород) Т и поперечного (вкрест простирания) Та геологического разреза.

В принципе, для интерпретации результатов скважинной магниторазведки можно применять те же методические приемы, что и в полевой магниторазведке, если считать скважину прямолинейным профилем наблюдения, а расстояние до намагниченного объекта вычислять по нормали к оси скважины. Однако нужно иметь в виду следующие различия.

  1. В полевой магниторазведке аномальный объект располагается всегда в нижнем полупространстве, в скважинной - где угодно. Поэтому, если в полевой магниторазведке положение объекта можно локализовать, измерив Та по системе профилей, то в скважинных условиях это невозможно: и профиль наблюдения всего один, и положение объекта относительно профиля произвольно. Отсюда и вытекает необходимость трехкомпонентных измерений в скважинах, чтобы по трем составляющим построить вектор Та, а по нему определить местоположение источника аномалии.

  2. В скважинной магниторазведке к услугам наблюдателя всего только один профиль наблюдения (одна скважина), причем часто он даже не дает выхода в нормальное магнитное поле, знание которого необходимо для большей части методов интерпретации в полевой магниторазведке.

  3. При скважинных наблюдениях возможны измерения внутри намагниченных тел.

  4. Аномалии Z - составляющей в скважинной магниторазведке имеют "обратный" вид по сравнению с полевой. Так, например, если в полевой магниторазведке аномалия Z - составляющей для шара, измеренная по профилю, имеет максимум над шаром с двумя небольшими минимумами на периферии, то в скважине, проходящей рядом с этим же объектом, наблюдается минимум Z - составляющей напротив центра шара и небольшие максимумы выше и ниже последнего. При этом по одной лишь аномалии Z - составляющей невозможно установить, с какой стороны от скважины находится этот шар.



Аномалии магнитного поля от намагниченного шара при наблюдениях на поверхности и в буровых скважинах.

Задача определения местоположения намагниченного объекта легко решается по векторам Та, нужно только помнить, что они направлены по касательным к магнитным силовым линиям аномального поля.

Векторы Та от изометричных тел очень резко меняют свою амплитуду и направление.

В северном полушарии Земли вектора Та от вытянутого (эллиптического или линзовидного тела) образуют "сходящийся веер" у верхнего конца намагниченного объекта и "расходящийся веер" - у нижнего. При этом вектора "сходящегося веера" направлены к намагниченному объекту, и местоположение его верхнего конца можно определить по пересечению этих векторов; вектора "расходящегося веера" направлены от намагниченного объекта, положение нижнего конца объекта можно определить по пересечению продолжений этих векторов.



Кривые Za и вектора Та в скважинах от намагниченного объекта в форме наклонно залегающего эллипсоида вращения (линзы).

Разработаны специальные приемы интерпретации векторной магниторазведки, позволяющие определить не только направление из скважины на намагниченный объект и расстояние до него, но и его форму, размеры, элементы залегания.

Область применения ТСМ - это, прежде всего, магнетитовые месторождения, затем полиметаллические, реже - месторождения бокситов и марганцевых руд.

Решаемые задачи: обнаружение не выявленных ранее, "слепых" рудных тел, определение их местоположения, элементов залегания и размеров, оценка магнитных свойств, определение природы наземных магнитных аномалий.

При разведке магнетитовых месторождений рудные тела с минимальными промышленными запасами могут быть обнаружены с помощью ТСМ на расстоянии до 200-300 м.

Большой вклад в развитие скважинной магниторазведки внесли уральские ученые: проф. В.Н. Пономарев, доктора геол.-мин. наук А.Н. Авдонин и A.M. Мухаметшин.

Ядерно-магнитный каротаж

Физические основы

Ядерно-магнитный каротаж (ЯМК) основан на изучении ядерно-магнитных свойств водорода флюидов, заполняющих поры породы. Ядра атомов водорода, как и других элементов (фтора, алюминия, углерода-13 и других), обладают собственным механическим моментом Р (спином) и магнитным моментом μ, оси которых совпадают.

Спин (верчение) характеризует собственный механический момент количества движений, которым обладают элементарные частицы. Он может принимать только целые или полуцелые значения (0; 0.5; 1; 1.5), выраженные в единицах h/2π, где h - постоянная Планка (6.6261·10-34 Дж·Гц-1). Спины электрона, позитрона, протона и нейтрона равны 0.5. Это означает, что они принимают значение 0.5 h/2π. При помещении таких ядер в постоянное внешнее магнитное поле Н их магнитные моменты μ стремятся ориентироваться в направлении вектора данного поля, что ведет к возникновению ядерной намагниченности. При снятии внешнего магнитного поля происходит разрушение приобретенной ядерной намагниченности из-за беспорядочного теплового движения атомов и молекул вещества. Так как это происходит в магнитном поле Земли, ядра ориентируются вдоль этого поля, прецессируя (совершая затухающие вращения) вокруг него подобно волчку в поле силы тяжести с так называемой ларморовой частотой:

картинка

где Hз - напряженность магнитного поля Земли (Hз≈40 А/м); γгир= μ/Р - гиромагнитное отношение (отношение магнитного момента μ прецессирующих ядер к их механическому моменту Р). Наибольшее значение γгир свойственно водороду. Этим вызвано наиболее сильное выражение эффекта ядерного магнетизма у водорода. Во всех других породообразующих элементах этот эффект слишком мал, чтобы его можно было измерить в скважине. Главной задачей ЯМК является регистрация эффектов свободной прецессии протонов ядер водорода в земном магнитном поле. С этой целью в скважину опускают скважинный прибор, включающий в себя катушку удлиненной прямоугольной формы, коммутатор, попеременно подключающий выводы катушки то к источнику постоянного тока силой в 2-3 А, то к выходу усилителя. При подключении катушки к источнику тока в окружающей среде создается поляризующее постоянное магнитное поле. При подключении катушки к усилителю наведенная в ней под действием прецессии ядер водорода ЭДС усиливается и передается по кабелю на поверхность в наземную аппаратуру, где регистрируется.

картинка

Блок-схема аппаратуры для возбуждения сигналов свободной процессии в скважине и их регистрации: 1 – катушка; 2 – коммутатор катушки; 3 – реле остаточного тока; 4 – конденсатор; 5 – устройство управления; 6 – источник тока поляризации; 7 – усилитель сигналов свободной процессии; 8 – детектор огибающей ССП (сигнала свободной процессии); 9 – измерительное устройство; 10 – вычислительное устройство.

При отсутствии внешнего искусственного магнитного поля магнитные моменты ядер водорода μ ориентированы в направлении магнитного поля Земли Hз.

При пропускании тока поляризации Iп через поляризующую катушку в течение времени tп в исследуемой среде образуется постоянное магнитное поле напряженности Нп. Вектор этого поля составляет некоторый угол с вектором напряженности поля Земли Hз и значительно (примерно на два порядка) превышает его по величине. Возникающий при этом в течение времени tп вектор ядерной намагниченности М ориентируется по результирующему вектору Hср, представляющему собой сумму двух векторов напряженности Нп и Hз.

картинка

Поведение вектора ядерной намагниченности (I) до поляризации (а), во время нее (б) и в начале свободной процессии (в), а также схема процессов (II), возникающих при исследованиях методом ЯМК (по С.М. Аксельроду):

а – график во время пропускания тока поляризации I=f(t); б – измерение величины вектора ядерной намагниченности М; в – изменение во времени ЭДС сигнала свободной процессии ЕССП= f(t); г – сигнал свободной процессии после усиления и детектирования.

Вектор ядерной намагниченности М устанавливается не сразу после включения тока Iп, а в течение времени Т1 продольной релаксации, характеризующей скорость нарастания ядерной намагниченности по направлению приложенного поля поляризации:

картинка

где М0 - вектор ядерной намагниченности при tп→∞; практически tп принимается равным 3-5 T1.

После выключения поляризующего тока (ступенчато снижением до величины остаточного тока Iост и полным выключением через время tост) в среде действует только магнитное поле Земли, и вектор ядерной намагниченности процессирует вокруг вектора Hз с круговой частотой ω, постепенно возвращаясь к своей первоначальной величине. Вектор ядерной намагниченности М по отношению к Hз может быть разложен на две составляющие: продольную Мll, совпадающую с направлением вектора Hз, и поперечную М⊥, перпендикулярную к Hз.

Под действием вектора М⊥ в катушке наводится электрический синусоидальный сигнал (переменная ЭДС) - сигнал свободной прецессии (ССП), соответствующий Et амплитуде ССП (в В) в момент времени t (в с), прошедшего с начала прецессии, затухающей по экспоненциальному закону с постоянной времени поперечной релаксации Т2:

картинка

Время поперечной релаксации Т2 характеризует скорость затухания сигнала (за Т2 обычно принимается время, в течение которого начальная амплитуда Е0 уменьшается приблизительно в 2.7 раза, E0 - начальная амплитуда ССП, пропорциональная вектору ядерной намагниченности М).

Для предотвращения влияния переходных процессов, вызванных выключением остаточного тока, момент подключения катушки к усилителю сдвинут на величину мертвого времени τ. ЭДС, индуцируемая в катушке зонда, усиливается и передается по кабелю на дневную поверхность, где регистрирующее устройство фиксирует амплитуду ЭДС Ut в момент времени t. Амплитуда Ut представляет собой огибающую сигнала свободной прецессии: Ut=U0exp(-t/T2), где U0 - начальная амплитуда сигнала свободной прецессии. Так как сигнал свободной прецессии убывает по экспоненциальному закону, достаточно иметь два значения его амплитуды U1 и U2 или U1 и U3, разделенных некоторыми временными интервалами t1, t2 и t3 (35, 50 и 70 мс) после начала прецессии, чтобы по ним путем экстраполяции восстановить амплитуду сигнала U0, по которой определяется индекс свободного флюида:

картинка

Аппаратура ЯМК позволяет одновременно автоматически регистрировать две или три каротажные кривые изменения с глубиной амплитуд сигнала свободной прецессии U1, U2 и U3 при фиксированных временах t1, t2 и t3 и постоянных значениях tп и tост. По этим данным оценивается (или непосредственно регистрируется при использовании счетно-решающего устройства) величина U0, приведенная к моменту выключения остаточного поляризующего тока. Кривые U1, U2, U3, U0, регистрируемые в функции глубины, называются кривыми ЯМК.

картинка

Результаты ЯМК: 1 – известняк; 2 – песчаник; 3 – глина.

Интерпретация диаграмм ЯМК

Интерпретация диаграмм ЯМК заключается в определении величин сигнала свободной прецессии и времени продольной релаксации T1. Время поперечной релаксации Т2, будучи искажено неоднородностью поля Земли, для изучения разрезов скважин не используется. На основании интерпретации диаграмм ЯМК возможно решение основных задач: выделение коллекторов и оценка их коллекторских свойств; оценка характера насыщения коллектора и перспективы получения нефти, газа или воды из пласта.

Выделение коллекторов

Изучение коллекторских свойств пород производится по U0. На величину измеряемого сигнала свободной прецессии оказывают влияние только те ядра водорода, которые входят в состав молекул, способных перемещаться в поровом пространстве коллектора. Исследования показали, что связанная вода и твердые углеводороды (битум, кир, асфальтены), содержащие протоны малой подвижности, сигналом свободной прецессии на диаграммах ЯМК не отмечаются. Это вызвано тем, что в связи с наличием мертвого времени τ в ЯМК регистрируются только те ССП, которые характеризуются временем Т2>30 мс. Величина U0 калибруется в единицах, называемых индексом свободного флюида (ИСФ) и характеризующих объем пор (в %), занятых жидкостью, участвующей в образовании ССП. Индекс свободного флюида условно считают соответствующим коэффициенту эффективной пористости:

картинка

где kво - коэффициент остаточной водонасыщенности.

Индекс свободного флюида определяется как отношение начальной амплитуды ССП, зарегистрированной на образце породы, поры которого заполнены пресной водой, к начальной амплитуде ССП, измеренной на дистиллированной воде, занимающей такой же объем, как и образец породы. Соответственно ИСФ изменяется от 0 до 100 %. Для установления масштаба кривых ЯМК в единицах ИСФ аппаратура эталонируется.

На характер зависимости ИСФ от содержания свободной воды не влияют литологические, структурные и иные особенности породы. Следовательно, в пластах, представляющих собой чередование прослоев коллекторов и неколлекторов, вклад в величину ИСФ вносят только прослои коллекторов, а остальные разности, не содержащие свободного флюида, не создают сигнала свободной прецессии. Поэтому эффективная пористость kп.эф, определенная для неоднородного пласта или пачки пластов, дает возможность определить полную емкость рассматриваемого объекта. Соответственно произведение kп.эф на мощность объекта Н дает суммарную эффективную емкость всех содержащихся в нем прослоев коллекторов.

В коллекторах с трещинной пористостью, входящей в общую систему пор, переход от ИСФ к kп.эф осуществляется так же, как для гранулярных коллекторов. Для коллекторов, характеризующихся наличием изолированных каверн, не связанных с общей системой пор, сравнение kп.эф и ИСФ неправомерно, так как общий объем изолированных каверн не входит в эффективную пористость, но входит в ИСФ. В данном случае необходимо исключить объем изолированных каверн, учтенных по кривой ИСФ, но не влияющих на kп.эф.

Однородные водородсодержащие пласты, мощности которых равны длине зонда или превышают ее, отмечаются на кривых ЯМК симметричными максимумами, расположенными в средней части пласта; границы пластов проводятся по средине наклонных линий. Если мощность пласта меньше длины зонда, происходит уменьшение ИСФ по сравнению с истинными величинами и расширение максимума; определение границ тонких пластов по кривым ЯМК затрудняется. В качестве существенных (характерных) величин (ИСФ)к принимаются их средние значения.

картинка

Теоретические кривые ЯМК для пластов различной мощности. (ИСФ)п/(ИСФ)вм=5.

Для получения истинных значений (ИСФ)и по данным (ИСФ)к вводятся поправки за влияние скважины, глинистой корки, пространственной ориентации скважины и других. Для этого построены соответствующие палетки и номограммы.

Определение характеристик насыщения пород

Это определение производится по времени продольной релаксации Т1. Для измерения Т1 прибор устанавливается на заданной глубине в интервалах, охарактеризованных по кривой ИСФ как коллекторы, содержащие свободную жидкость. Время продольной релаксации Т1 можно определять с использованием Utп без учета ряда факторов, влияющих на амплитуду ССП, - диаметра скважины, толщины глинистой корки и пространственной ориентации скважины. Измерение Т1 выполняют на глубине залегания исследуемого пласта двумя способами: в сильном поле - Т1с.п и в слабом поле - Т1сл.п.

Для определения Т1с. п проводится серия измерений амплитуд Utп (в В) для различных времен tп (в с) и поляризующего магнитного поля Нп (в А/м). Одно из измерений выполняется с достаточно большим временем tп→∞, обеспечивающим равновесное состояние вектора ядерной намагниченности М∞с.п (в А/м). Этому вектору соответствует амплитуда U∞с.п и Т1с.п может быть рассчитана:

картинка

Время продольной релаксации в слабом поле Т1с.п определяют по длительности действия остаточного поляризующего поля Ност. Для этого выполняют измерения амплитуд ССП при фиксированном времени поляризации tп, но при последовательно изменяющемся времени действия tост и соответственно остаточного тока Iост.

На практике для определения Т1 по результатам измерений не используют непосредственные зависимости амплитуд Utп и Utост от времен tп и tост. Величины Т1 находят графически.

Для этого по результатам измерений вычисляют значения так называемых функций продольной релаксации Fc.п(tп) и Fcл.п(tост), которые в сильном и слабом поле соответственно имеют вид:

картинка

где U(tп) - амплитуда ССП при времени поляризации tп;

картинка

где U(tост) - амплитуда ССП при времени действия остаточного тока; U(tост→∞) - амплитуда ССП при tост→∞, непосредственно не измеряемая, а вычисляемая по формуле U(tост→∞)=U0 (Iост/Iп).

Рассчитанные значения функции Fc.п(tп) или Fcл.п(tост) соответствуют реальным измерениям tп и tост и применяются для графического определения Т1. С этой целью вычисленные функции наносятся на бланк с полулогарифмической шкалой.

В однородной водонасыщенной среде, поры которой имеют одинаковые размеры, функция продольной релаксации даже при наличии связанной воды является однокомпонентной. В полулогарифмическом масштабе такая зависимость имеет вид прямой с постоянными Т1 и значениями функций около 0.37. При наличии смеси флюидов с различными Т1 зависимость изображается в виде кривой, которая может быть разложена на несколько прямых. По этим прямым находят Т1 каждого компонента. Тангенс угла полученных прямых равен времени Т1.

Прямые, представляющие функции Fc.п(tп) или Fcл.п(tост), переносятся параллельно самим себе так, чтобы они пересекали ось ординат в точке, равной единице. Время Т1, соответствующее ординате 0.37, отсчитывается (в мс) на оси абсцисс. Для приближенной оценки Т1 достаточно произвести измерения при двух значениях времени поляризации. При точных определениях производится до 15 измерений для значений tп или tост.

картинка

Функции релаксации Fсп (tп) или Fсл.п (tо ст) в полулогарифмической системе координат (по С.М. Аксельроду).

а – однокомпонентная экспоненциальная зависимость; б – двухкомпонентная зависимость; функции релаксации: 1 – двухкомпонентная; 2 и 3 – с большим (Т1'=1280 мс) и малым (Т1''=350 мс) временем продольной релаксации; 4 и 5 – перенесенные параллельно соответственно 2 и 3.

В высокопроницаемых пластах наибольшие времена релаксации (больше 1 с) отмечаются в водонасыщенных пластах или нефтенасыщенных, содержащих легкую нефть. Однако дисперсия этих значений велика: на величину Т1 помимо характера насыщения коллектора влияют и такие факторы, как удельная поверхность коллектора, его гидрофильность или гидрофобность, тип пористости, глинистость, вязкость флюида. При различии нефте и водонасыщенности пласта учитывают, что высоковязкие (смолистые) компоненты нефти при низких температурах характеризуются быстрозатухающими сигналами свободной прецессии и отмечаются низкими показаниями на диаграммах ЯМК. Согласно опыту изучения продуктивных горизонтов с закачиваемой пресной водой, время Т1 зоны проникновения у водоносных коллекторов лежит в пределах 200 - 600 мс, а у нефтегазоносных – 700-1000 мс. Кроме того, нефтегазоносные пласты благодаря наличию остаточной нефти или газа в зоне проникновения характеризуются двумя компонентами в характеристике продольной релаксации.

Ядерно-магнитный каротаж предназначен для выделения пластов, содержащих подвижный флюид, определения их пористости и характера насыщения. Комплексирование результатов ЯМК с данными других каротажных исследований скважин позволяет расширить и уточнить возможности количественной оценки пористости коллекторов, их эффективной мощности, насыщенности и промышленной нефтеносности. Метод ЯМК используется также для разделения нефтеносных и битуминизированных пород.

Ограничения метода ЯМК связаны с невозможностью измерения ССП в среде с повышенной магнитной восприимчивостью, в породах с малой эффективной пористостью (1.5-2 %), в том числе в трещинных коллекторах, если часть трещин заполнена глинистым раствором. Этот метод неприменим при очень вязких нефтяных - более 600 мПа, при наличии в промывочной жидкости свободного флюида - воды или нефти, создающего дополнительный ССП. Недостатками метода являются: длительность измерений (скорость движения прибора ЯМК ограничивается временем поляризации tп>3Т1 и не должна превышать 250 м/ч); малая глубинность исследования (около 0.2 м), вследствие чего влияние зоны проникновения на показания ЯМК велико. Ядерно-магнитный каротаж применим при исследовании разрезов скважин, необсаженных колонной.

Ядерно-магнитный каротаж в земном магнитном поле

Ядерно-магнитный каротаж (ЯМК) в земном магнитном поле основан на измерении параметров свободной ядерной прецессии (СП) протонов, возникающей после выключения поляризующего поля.

ЯМК применяют в необсаженных скважинах для выделения коллекторов, приблизительной оценки их эффективной пористости, определения характера (нефть, вода) насыщенности коллекторов.

Требования к измерительным зондам ЯМК:

  • диапазон определения индекса свободного флюида - 3-100 %;

  • предел допускаемой основной погрешности определения ИСФ - ±3 % в диапазоне ИСФ от 3 до 50 % и ±5 % в диапазоне ИСФ от 50 до 100 %;

  • допускаемая дополнительная погрешность, вызванная изменением напряжения питания на ±10 %, - не более 0.2 основной погрешности;

  • допускаемая дополнительная погрешность, вызванная изменением температуры окружающей среды, - не более 0.1 основной погрешности на каждые 10 °С относительно стандартного значения, равного 20 °С.

Первичную и периодические калибровки выполняют, поместив скважинный прибор в стандартный образец ИСФ 3264-84, который устанавливают вертикально на расстоянии не менее 50 м от силовой, осветительной и радиотрансляционной сетей, убрав в радиусе 50 м мелкие ферромагнитные предметы (железный лом). Полевую калибровку проводят с помощью контрольного датчика.

Ядерно-магнитный каротаж в сильном поле

Ядерно-магнитный каротаж (ЯМК) в искусственном магнитном поле основан на измерении параметров свободной ядерной прецессии протонов, возникающей после выключения поляризующего поля. Предназначен для определения структуры порового пространства, фильтрационно-емкостных свойств флюидов на основе измерения и обработки кривой релаксации флюидов, заполняющих поровое пространство.

Типовые условия применения:

• открытый ствол вертикальных и слабонаклонных (до 25°) скважин при выполнении спускоподъемных операций на кабеле; сильнонаклонные и горизонтальные скважины при работе по технологии «мокрый разъем»;

• закрытый ствол скважин специальной конструкции со стеклопластиковыми хвостовиками;

• может применяться в скважинах с минимальным проходным диаметром не менее 170 мм и номинальный диаметром открытого ствола от 190 до 295 мм;

• промывочная жидкость – непроводящая (РНО, ИБР) и проводящая (с удельным электрическим сопротивлением более 0.03 Ом*м) без добавок утяжелителей на основе магнитных минералов (гематит и др.).

Применение:

• изучение геологического строения разреза с получением информации для выполнения фациального и циклостратиграфического анализа;

• изучение структуры порового пространства осадочных, магматических, метаморфических пород с качественной оценкой распределения пористости по размерам пор и на этой основе – определение фильтрационно-емкостных свойств пород, в том числе:

- коэффициент общей пористости, независимый от литологии пород

- коэффициент эффективной пористости;

- коэффициент остаточной водонасыщенности и выделением долей капиллярно-связанной воды и воды глин;

• изучение наличия, состава и свойств остаточных флюидов в зоне исследования.

Список використаної літератури:

1 «Геофизические исследования скважин» Ю.И. Горбачев;

2 «Общий курс геофизических исследований скважин» Д.И. Дьяконов, Е.И Леонтьев, Г.С. Кузнецов;

3 «Мала гірнича енциклопедія» в 3-х т./ За ред. В.С. Білецького - Донецьк: «Донбас», 2004. ISBN 966-7804-14-3;

4 Сковородников И.Г. «Геофизические исследования скважин»: Курс лекций. - Екатеринбург: УПТА, 2003. - 294 с.
написать администратору сайта