Главная страница
Финансы
Экономика
Математика
Начальные классы
Информатика
Биология
Медицина
Сельское хозяйство
Ветеринария
Вычислительная техника
Дошкольное образование
Логика
Этика
Религия
Философия
Воспитательная работа
История
Физика
Политология
Социология
Языкознание
Языки
Право
Юриспруденция
Русский язык и литература
Строительство
Промышленность
Энергетика
Другое
Доп
образование
Связь
Электротехника
Автоматика
Физкультура
Технология
Классному руководителю
Химия
Геология
Иностранные языки
Логопедия
Искусство
Экология
Культура
География
ИЗО, МХК
Казахский язык и лит
Директору, завучу
Школьному психологу
Обществознание
Социальному педагогу
Языки народов РФ
ОБЖ
Музыка
Механика
Украинский язык
Астрономия
Психология

Случайное событие. Вероятность


Скачать 0.55 Mb.
НазваниеСлучайное событие. Вероятность
АнкорLektsia_1Zh.doc
Дата10.03.2018
Размер0.55 Mb.
Формат файлаdoc
Имя файлаLektsia_1Zh.doc
ТипЛекция
#13881
страница1 из 2
  1   2

Лекция 1.

Цели, задачи и структура медицинской и биологической физики. Ее место и роль в системе медицинского образования, межпредметные связи с другими медико-биологическими и клиническими дисциплинами.

Вероятностный характер медико-биологических процессов. Элементы теории вероятностей. Вероятность случайного события. Закон сложения и умножения вероятностей.

Принципы вероятностных подходов к задачам диагностики и прогно­зирования заболеваний.

Теория вероятностей



В теории вероятностей исследуются закономерности, относя­щиеся к случайным событиям, величинам, процессам. Врачи редко задумываются, что постановка диагноза имеет вероятно­стный характер и, как остроумно замечено, лишь патологоанатомическое исследование может достоверно определить ди­агноз умершего человека.
§2.1. Случайное событие. Вероятность
Наблюдая различные явления, можно заметить, что существу­ет два типа связей между условиями S и наступлением или ненас­туплением некоторого события А. В одних случаях осуществление комплекса условий S (испытание) непременно вызывает событие А. Так, например, материальная точка массой т0под воздействи­ем силы F(условие S) приобретает ускорение а = F/m0(событие А). В других случаях многократное повторение испытания может привести или не привести к появлению события А. Такие события принято называть случайными: к ним можно отнести появление в кабинете врача больного с данной болезнью, выпадение опреде­ленной стороны монеты при ее бросании и др.

Не следует думать о случайных явлениях как о беспричинных, ничем не обусловленных. Известно, что многие явления связаны между собой, отдельное явление представляет следствие како­го-то другого и само служит причиной последующего. Однако проследить количественно эту связь между условиями и событи­ем часто затруднительно или даже невозможно. Так, при броса­нии игральной кости (однородный кубик с пронумерованными шестью гранями: 1, 2, 3, 4, 5 и 6) окончательное положение куби­ка зависит от движения руки в момент бросания, сопротивления воздуха, положения кубика при попадании на поверхность, осо­бенности поверхности, на которую упал кубик, и других факто­ров, которые в отдельности учесть невозможно.

В быту применительно к таким случайным событиям употреб­ляют слова «возможно», «вероятно», «маловероятно», «невероятно». В некоторых случаях такая оценка больше характеризует желание говорящего, чем истинную степень возможности или не­возможности события. Однако и случайные события, если их чис­ло достаточно велико, подчиняются определенным закономернос­тям. Количественная оценка закономерностей, относящихся к случайным событиям, дается в разделе математики, называемом теорией вероятностей.

Теория вероятностей изучает закономерности, присущие мас­совым (статистическим) случайным событиям.

Отдельные исторические факты, «неожиданности», «катастро­фы» являются единичными, как бы неповторимыми, событиями, и количественные вероятностные суждения относительно них сделать невозможно. Исторически теория вероятностей появи­лась в связи с попытками подсчета возможности различных исхо­дов в азартных играх. В настоящее же время она применяется в науке, в том числе биологии и медицине, для оценки вероятности практически важных событий. От игр остались лишь наглядные примеры, которые удобно использовать для иллюстрации теоре­тических положений.

Статистическое определение вероятности. Вероятность Р(А) в теории вероятностей выступает как числовая характеристика сте­пени возможности появления какого-либо определенного случай­ного события А при многократном повторении испытаний.

Допустим, при 1000 бросаний игральной кости цифра 4 выпа­дает 160 раз. Отношение 160/1000 = 0,16 показывает относитель­ную частоту выпадания цифры 4 в данной серии испытаний. В бо­лее общем случае, когда случайное событие А происходит т раз в серии п независимых испытаний, относительной частотой со­бытия в данной серии испытаний или просто частотой события А называют отношение
(2.1)
При большом числе испытаний частота события примерно по­стоянна: увеличение числа испытаний уменьшает колебание час­тоты события около постоянной величины.
Вероятностью случайного события назовем предел, к ко­торому стремится частота события при неограниченном увеличении числа испытаний:
(2.2)
Естественно, что никто и никогда не сможет проделать неогра­ниченное число испытаний для того, чтобы определить вероят­ность. В этом нет и надобности. Практически за вероятность [см. (2.2)] можно принять относительную частоту события при боль­шом числе испытаний. Так, например, из статистических законо­мерностей рождения, установленных за много лет наблюдений, вероятность того события, что новорожденный будет мальчиком, оценивают в 0,515.

Классическое определение вероятности. Если при испыта­ниях нет каких-либо причин, вследствие которых одно случайное событие появлялось бы чаще других (равновозможные собы­тия), можно определить вероятность исходя из теоретических со­ображений. Например, выясним в случае бросания монеты часто­ту выпадания герба (событие А). Разными экспериментаторами при нескольких тысячах испытаний было показано, что относи­тельная частота такого события принимает значения, близкие к 0,5. Учитывая, что появление герба и противоположной стороны монеты (событие В) являются событиями равновозможными, ес­ли монета симметрична, суждение Р(А) = Р(В) = 0,5 можно было бы сделать и без определения частоты этих событий. На основе по­нятия «равновозможности» событий формулируется другое опре­деление вероятности.

Допустим, что в результате испытания должно произойти только одно из п равновозможных несовместных событий (несов­местными называют события, если их одновременное осуществ­ление невозможно). Пусть рассматриваемое событие А происхо­дит в т случаях, которые называются благоприятствующими А, и не происходит при остальных п - т, неблагоприятствующих А. Тогда вероятностью можно назвать отношение благоприят­ствующих случаев к общему числу равновозможных несов­местных событий:

Р(А) = m/n .(2.3)

Это классическое определение вероятности.

Рассмотрим не­сколько примеров.

1. В урне находится 40 шаров: 10 черных и 30 белых. Найти вероят­ность того, что вынутый наугад один шар будет черным.

Число благоприятствующих случаев равно числу черных шаров в урне: т = 10. Общее число равновозможных событий (вынимание одного шара) равно полному числу шаров в урне: п = 40. Эти события несовмест­ны, так как вынимается один и только один шар. По формуле (2.3) имеем:

Р(А) = 10/40 = 1/4.

2. Найти вероятность выпадания четного числа при бросании играль­ной кости.

При бросании кости реализуются шесть равновозможных несов­местных событий: появление одной цифры 1, 2, 3, 4, 5 или 6, т. е. п = 6. Благоприятствующими случаями являются выпадания одной из цифр 2, 4 или 6: т = 3. Искомая вероятность:

Р(А) = m/n – 3/6 = 1/2.

Как видно из определений вероятности события (2.2) и (2.3), для всех событий 0 Р(А) 1.

События, которые при данных испытаниях не могут про­изойти, называются невозможными: их вероятность равна нулю.

Так, например, невозможно из урны с белыми и черными ша­рами вытащить красный шар, невозможно на игральной кости получить цифру 7.

Событие, которое при данном испытании обязательно произойдет, называется достоверным, его вероятность рав­на 1.

Примером достоверного события является извлечение белого шара из урны, в которой находятся только белые шары.

В ряде случаев вычислить вероятность события оказывается проще, если представить его в виде комбинации более простых со­бытий. Этой цели служат некоторые теоремы теории вероятнос­тей.

Теорема сложения вероятностей: вероятность появления одного (безразлично какого) события из нескольких несов­местных событий равна сумме их вероятностей. Для двух несовместных событий

Р(А или В) = Р(А) + Р(В). (2.4)

Докажем эту теорему. Пусть п — общее число испытаний, т1— число случаев, благоприятствующих событию А, т2— число слу­чаев, благоприятствующих событию В. Число случаев, благопри­ятствующих наступлению либо события А, либо события В, равно m1 + m2. Тогда Р(А или В) = (т1 + т2)/п = т1/п + т2/п. Отсюда, учитывая (2.3), имеем

Р(А или В) = Р(А) + Р(В).
* Найти вероятность выпадания 1 или 6 при бросании игральной кости.

События А (выпадание 1) и В (выпадание 6) являются равновозможными: Р(А) = Р(В) = 1/6, поэтому из (2.4) находим Р(А или В) =1/6 + 1/6 = 1/3.

Сложение вероятностей справедливо не только для двух, но и для любого числа несовместных событий.
* В урне находится 50 шаров: 10 белых, 20 черных, 5 красных и 15 си­них. Найти вероятность появления белого, или черного, или красного шара при однократной операции изъятия шара из урны.

Вероятность вынимания белого шара (событие А) равна Р(А) = 10/50 = 1/5, черного шара (событие В) — Р(В) = 20/50 = 2/5 и крас­ного (событие С) — Р(С) = 5/50 = 1/10. Отсюда по формуле сложения ве­роятностей получим Р(А или В или С) = Р(А) + Р(В) + Р(С) = 1/5 + 2/5 + + 1/10= 7/10.

Если два события единственно возможны и несовместны, то их называют противоположными.
Такие события принято обозначать, например, А и .

Сумма вероятностей двух противоположных событий, как следует из теоремы сложения вероятностей, равна еди­нице:

(2.5)

*Проиллюстрируем справедливость (2.5) на предыдущем примере.
Пусть вынимание белого, или черного, или красного шара будет событи­ем А1 , Р(А1) = 7/10. Противоположным событием является доставание синего шара. Так как синих шаров 15, а общее количество шаров 50, то получаем Р() = 15/50 = 3/10 и Р(А1) + Р() = 7/10 + 3/10 = = 1.

*В урне находятся белые, черные и красные шары. Вероятность доставания черного или красного шара равна 0,4. Найти вероятность доставания из урны белого шара.

Обозначим А событие вынимания черного или красного шара, Р(А) = 0,4; противоположным событием будет изъятие белого ша­ра, тогда на основании (2.5) вероятность этого события Р() = 1 - Р(А) = = 1 - 0,4 = 0,6.

Систему событий (А1, А2, ... Ak) называют полной, если при испытаниях наступит одно и только одно из этих собы­тий. Сумма вероятностей событий, образующих полную сис­тему, равна единице.

* В урне имеется 40 шаров: 20 белых, 15 черных и 5 красных. Вероят­ность появления белого шара (событие А) равна Р(А) = 20/40 = 1/2, для черного шара (событие В) — Р(В) = 15/40 = 3/8 и для красного шара (со­бытие С) — Р(С) = 5/40 = 1/8. В этом случае система событий А1, А2, А3 является полной; можно убедиться, что Р(А) + Р(В) + Р(С) = 1/2 + 3/8 + + 1/8 = 1.

Теорема умножения вероятностей: вероятность совместно­го появления независимых событий равна произведению их вероятностей. Для двух событий

Р(А и В) = Р(А) • Р(В). (2.6)

Докажем эту теорему. Так как события А и В независимы, то каждому из т1 случаев, благоприятствующих А, соответствуют т2случаев, благоприятствующих В. Таким образом, общее число случаев, благоприятствующих совместному появлению событий А и В, равно т1 т2. Аналогично, общее число равновозможных собы­тий равно п1 п2, где п1 и п2— числа равновозможных событий со­ответственно для А и В. Имеем

(2.7)
* В одной урне находится 5 черных и 10 белых шаров, в другой 3 чер­ных и 17 белых. Найти вероятность того, что при первом вынимании ша­ров из каждой урны оба шара окажутся:

1) черными; 2) белыми; 3) в пер­вой урне будет вынут черный шар, а во второй — белый; 4) в первой урне будет вынут белый шар, а во второй — черный.

Вероятность вытаскивания черного шара из первой урны (событие А) равна Р(А) =

= 5/15 = 1/3, черного шара из второй урны (событие В) — Р(В) = 3/20, белого шара из первой урны (событие А') Р(А') = 10/15 = 2/3 и белого шара из первой урны (событие В') Р(В') = 17/20. Нахо­дим вероятность совместного появления двух независимых событий по формуле (2.6):

1) Р(А и В) = Р(А) • Р(В) = (1/3) (3/20) = 3/60 — оба шара черные;

2) Р(А' и В') = Р(А') • Р(В') = (2/3) (17/20) = 17/30 — оба шара белые;

3) Р(А' и В') = Р(А) • Р(В') = (1/3) (17/20)= 17/60 — в первой урне бу­дет вынут черный шар, а во второй — белый;

4) Р(А' и В) = Р(А') • Р(В) = (2/3) (3/20) = 1/10 — в первой урне будет вынут белый шар, а во второй — черный.

Все четыре возможных случая А и В, А' и В', А и В', А' и В образуют полную систему событий, поэтому

Р(А и В) + Р(А' и В') + Р(А и В') + Р(А' и В) = 3/60 + 17/30 + 17/60 + 1/10 = 1.
* Найти вероятность того, что в семье с тремя детьми все трое сыновья. Считать, что вероятность рождения мальчика равна 0,515 и по каждого последующего ребенка не зависит от пола предыдущих детей.

По теореме умножения вероятностей, Р(А и В и С) = 0,515 0,515 0,515  0,14.

Теорема умножения вероятностей усложняется, если оп­ределяется вероятность события, состоящего из совместно­го появления двух зависимых между собой событий. В том случае, когда событие В выполняется при условии, что собы­тие А имело место, вероятность совместного появления двух этих событий равна

Р(А и В) = Р(А) • Р(В/А),(2.8)

где Р(В/А) условная вероятность, т. е. вероятность события В при условии, что событие А состоялось.

* В урне 5 шаров: 3 белых и 2 черных. Найти вероятность того, что по­следовательно один за другим будут вынуты черный и белый шары.

Вероятность того, что первым будет изъят черный шар (событие А), равна Р(А) = т/п = 2/5. После удаления черного шара в урне остается 4 шара: 3 белых и 1 черный. В этом случае вероятность вынимания белого шара (событие В после выполнения события А) равна Р(В/А) = 3/4. Ис­пользуя (2.8), получаем

Р(А и В) = (2/5) • (3/4) = 3/10.

§ 2.2. Случайная величина. Закон распределения. Числовые характеристики

Определение случайной величины. Многие случайные собы­тия могут быть оценены количественно случайными величинами,

Случайной называют такую величину, которая принима­ет значения в зависимости от стечения случайных обсто­ятельств.

Случайными величинами являются: число больных на приеме у врача, число студентов в аудитории, число рождений в городе, продолжительность жизни отдельного человека, скорость моле­кулы, температура воздуха, погрешность в измерении какой-либо величины и др. Если пронумеровать шары в урне примерно так, как это делают при разыгрывании тиража лото, то произвольное вынимание шара из урны покажет число, являющееся случайной величиной.

Различают дискретные и непрерывные случайные величины.

Случайная величина называется дискретной, если она принимает счетное множество значений: число букв на произ­вольной странице книги, энергия электрона в атоме, число волос на голове человека, число зерен в колосьях, число молекул в вы­деленном объеме газа и т. п.

Непрерывная случайная величина принимает любые зна­чения внутри некоторого интервала: температура тела, масса зерен в колосьях пшеницы, координата места попадания пули в цель (принимаем пулю за материальную точку) и др.

Распределение дискретной случайной величины. Диск­ретная случайная величина считается заданной, если указаны ее возможные значения и соответствующие им вероятности. Обозна­чим дискретную случайную величину X, ее значения хг х2, ..., а вероятности Р(х1) — p1, Р(х2) = р2и т. д. Совокупность Xи Р называется распределением дискретной случайной величи­ны (табл. 1).

Таблица 1

X

Х1

Х2

Х3

Х4

Х5



Р

p1

p2

рз

р4

р5




(2.9)
Так как все возможные значения дискретной случайной вели­чины представляют полную систему (см. § 2.1), то сумма вероят­ностей равна единице:

Здесь предполагается, что дискретная случайная величина имеет п значений. Выражение (2.9) называется условием норми­ровки.
*Случайной величиной является число очков, выпадающих на верх­ней грани игральной кости. Указать распределение этой случайной вели­чины (табл. 2).

Таблица 2

X

1

2

3

4

5

6

Р

1/6

1/6

1/6

1/6

1/6

1/6


* Случайной величиной является номер вида спорта в игре «Спортло­то». Общее число видов равно 49. Указать распределение этой случайной величины (табл. 3).
Таблица 3

X

1

2

3



49

р

1/49

1/49

1/49



1/49


Биномиальное распределение. Пусть некоторое испытание проводится трижды и при этом событие А происходит lраз (l— случайная величина, которая при тройном испытании может при­нимать значения 0, 1, 2 и 3). Вероятность наступления события А равна Р(А); вероятность того, что событие А не происходит, т. е. имеет место противоположное событие, равна [1 - Р(А)].

Значение l= 0 соответствует такому случаю, при котором трижды подряд событие А не происходило. Вероятность этого сложного события, по теореме умножения вероятностей (2.6), равна

Р(и и ) = [1 - Р(А)] [1 - Р(А)][1 - Р(А)] = [1 - Р(А)]3.

Значение l = 1 относится к случаю, при котором событие А про­изошло в одном из трех испытаний. По формуле (2.6) получаем

Р(А и и ) = Р(А) [1 - Р(А)][1 - Р(А)] = Р(А) [1 - Р(А)]2.

Так как при l = 1 происходят также и два других сложных со­бытия: ( и А и ) и ( и и А), то необходимо, воспользовав­шись теоремой сложения вероятностей (2.4), получить полную ве­роятность для l = 1, сложив трижды предыдущее выражение:

Р(А и и , или и А и , или и и А) = З Р(А) [1 - Р(А)]2.

Значение l = 2 соответствует случаю, при котором событие А произошло в двух из трех испытаний. Рассуждениями, подобны­ми приведенным выше, получим полную вероятность для этого случая:

Р(и А и А, или А и и А, или А и А и ) = З Р2(А) [1 - Р(А)].

При l = 3 событие А появляется во всех трех испытаниях. Ис­пользуя теорему умножения вероятностей, находим

Р(А и А и А) = Р3(А).

В итоге получаем биномиальное распределение, содержащее четыре члена (табл. 4).
Таблица 4

l

0

1

2

3

Р

[1-Р(А)]3

З Р(А) • [1 - Р(А)]2

З Р2(А) • [1 - Р(А)]

Р3(А)

В общем случае биномиальное распределение позволяет опре­делить вероятность того, что событие А произойдет lраз при п ис­пытаниях:

(2/10)

где р = Р(А); - число сочетаний из п элементов по l, равное







* На основе многолетних наблюдений вызов врача в данный дом оце­нивается вероятностью 0,5. Найти вероятность того, что в течение шести дней произойдет четыре вызова врача; Р(А) = 0,5, п = 6, l= 4.

Воспользуемся формулой (2.10):

Числовые характеристики дискретной случайной величи­ны. Во многих случаях, наряду с распределением случайной ве­личины или вместо него, информацию об этих величинах могут дать числовые параметры, получившие название числовых ха­рактеристик случайной величины. Рассмотрим наиболее упот­ребительные из них.

Математическое ожидание (среднее значение) случайной величины есть сумма произведений всех возможных ее значе­ний на вероятности этих значений:

(2.11)



Пусть при большом числе испытаний п дискретная случайная величина Xпринимает значения x1, x2, ..., хпсоответственно т1, т2 , …, тпраз. Среднее значение равно

Если n велико, то относительные частоты т1/п, т2/п, ... будут стремиться к вероятностям, а средняя величина — к математиче­скому ожиданию. Именно поэтому математическое ожидание час­то отождествляют со средним значением.

*Найти математическое ожидание для дискретной случайной вели­чины, которая задается цифрой на грани при бросании игральной кости
(см. табл. 2).

Используем формулу (2.11):

М(Х) = 1 • 1/6 + 2 • 1/6 + 3 • 1/6 + 4 • 1/6 + 5 • 1/6 + 6 • 1/6 = 7/2 = 3,5.

* Найти математическое ожидание для дискретной случайной вели­
чины, которая определяется тиражом «Спортлото» (см. табл. 3).

Согласно формуле (2.11), находим

М(Х) = 1 • 1/49 + 2 • 1/49 + ... + 49 • 1/49 = 25.

Возможные значения дискретной случайной величины рассеяны во­круг ее математического ожидания, часть из них превышает М(Х), часть — меньше М(Х). Как оценить степень разброса случайной величины отно­сительно ее среднего значения? Может показаться, что для решения та­кой задачи следует вычислить отклонения всех случайных величин от ее математического ожидания X - М(Х), а затем найти математическое ожидание (среднее значение) этих отклонений: М[Х - М(Х)]. Без доказа­тельства отметим, что эта величина равна нулю, так как отклонения слу­чайных величин от математического ожидания имеют как положитель­ные, так и отрицательные значения. Поэтому целесообразно учитывать либо абсолютные значения отклонений М[Х - М(Х)], либо их квадраты М[Х - М(Х)]2. Второй вариант оказывается предпочтительнее, так при­ходят к понятию дисперсии случайной величины.

Дисперсией случайной величины называют математиче­ское ожидание квадрата отклонения случайной величины от ее математического ожидания:

D(X) = М[Х - М(Х)]2 (2.12)

Без вывода приведем удобную для вычисления дисперсии фор­мулу

D(X) = М(Х2) - [М(Х)]2. (2.13)

Она означает, что дисперсия равна разности между математи­ческим ожиданием квадрата случайной величины X и квадратом ее математического ожидания.

*Найти дисперсию случайной величины, которая задается цифрой на
грани при бросании игральной кости (см. табл. 2).

Математическое ожидание этого распределения равно 3,5. Запишем значения квадратов отклонения случайных величин от математического ожидания: (1 - 3,5)2 = 6,25; (2 - 3,5)2 = 2,25; (3 - 3,5)2 = 0,25; (4 - 3,5)2 = 0,25; (5 - 3,5)2 = 2,25; (6 - 3,5)2 = 6,25. По формуле (2.12) с учетом (2.11) находим дисперсию:

D(X) = 6,25 • 1/6 + 2,25 • 1/6 + 0,25 • 1/6 + 0,25 • 1/6 + + 2,25 • 1/6 + 6,25 • 1/6 = 2,9167. Вычислим дисперсию, воспользовавшись формулой (2.13):

[М(Х)]2 = 3,52 = 12,25; М(Х2) = I2 • 1/6 + 22 • 1/6 + З2 • 1/6 + 42 • 1/6 + 52 • 1/6 +

+ 62 • 1/6 = 15,1667;

D(X) = 15,1667 - 12,25 = 2,9167.

Как следует из (2.12), дисперсия имеет размерность квадрата размерности случайной величины. Для того чтобы оценивать рас­сеяние случайной величины в единицах той же размерности, вво­дят понятие среднего квадратического отклонения, под кото­рым понимают квадратный корень из дисперсии:

(2.14)

Распределение и характеристики непрерывной случай­ной величины. Непрерывную случайную величину нельзя за­дать тем же законом распределения, что и дискретную. В этом случае поступают следующим образом.

Пусть dP— вероятность того, что непрерывная случайная ве­личина Xпринимает значения между х и х + dx. Очевидно, что чем больше интервал dx, тем больше и вероятность dP: dPdx. Кроме того, вероятность должна зависеть и от самой случайной величины, вблизи которой расположен интервал, поэтому

dP = f(x)dx,(2.15)

где f(x) плотность вероятности, или функция распределе­ния вероятностей. Она показывает, как изменяется вероят­ность, отнесенная к интервалу dxслучайной величины, в зависи­мости от значения самой этой величины:

f(x) = dP/dx.(2.16)

Интегрируя выражение (2.15) в соответствующих пределах, находим вероятность того, что случайная величина принимает ка­кое-либо значение в интервале (ab):

(2.17)

Условие нормировки для непрерывной случайной величины имеет вид

(2.18)
Наряду с плотностью вероятности в математике используют также и функцию распределения непрерывной случайной вели­чины:

(2.19)

Как видно из (2.19), эта функция равна вероятности того, что случайная величина принимает значения, меньшие х:




Для непрерывной случайной величины математическое ожидание и дисперсия записываются соответственно в виде

(2.20)

(2.21) (2.21)
  1   2
написать администратору сайта